cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A306736 Exponential infinitary highly composite numbers: where the number of exponential infinitary divisors (A307848) increases to record.

Original entry on oeis.org

1, 4, 36, 576, 14400, 705600, 57153600, 6915585600, 1168733966400, 337764116289600, 121932845980545600, 64502475523708622400, 40314047202317889000000, 33904113697149344649000000, 32581853262960520207689000000, 44604557116992952164326241000000, 74980260513665152588232411121000000
Offset: 1

Views

Author

Amiram Eldar, May 01 2019

Keywords

Comments

Subsequence of A025487.
All the terms have prime factors with multiplicities which are infinitary highly composite number (A037992) > 1, similarly to exponential highly composite numbers (A318278) whose prime factors have multiplicities which are highly composite numbers (A002182). Thus all the terms are squares. Their square roots are 1, 2, 6, 24, 120, 840, 7560, 83160, 1081080, 18378360, 349188840, 8031343320, 200783583000, 5822723907000, 180504441117000, ...
Differs from A307845 (exponential unitary highly composite numbers) from n >= 107. a(107) = 2^24 * (3 * 5 * ... * 19)^6 * (23 * 29 * ... * 509)^2 ~ 2.370804... * 10^456, while A307845(107) = (2 * 3 * 5 * ... * 19)^6 * (23 * 29 * ... * 521)^2 ~ 2.454885... * 10^456.

Crossrefs

Programs

  • Mathematica
    di[1] = 1; di[n_] := Times @@ Flatten[2^DigitCount[#, 2, 1] & /@ FactorInteger[n][[All, 2]]]; fun[p_, e_] := di[e]; a[1] = 1; a[n_] := Times @@ (fun @@@ FactorInteger[n]); s = {}; am = 0; Do[a1 = a[n]; If[a1 > am, am = a1; AppendTo[s, n]], {n, 1, 10^6}]; s (* after Jean-François Alcover at A037445 *)

Formula

A307848(a(n)) = 2^(n-1).

A358260 a(n) is the number of infinitary square divisors of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Nov 06 2022

Keywords

Comments

First differs from A007424 at n = 36, from A323308 at n = 64, and from A278908 and A307848 at n = 128.

Crossrefs

Similar sequences: A046951, A056624, A056626.
Sequences with the same initial terms: A007424, A278908, A307848, A323308.

Programs

  • Mathematica
    f[p_, e_] := 2^DigitCount[If[OddQ[e], e - 1, e], 2, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i=1, #f~, 2^hammingweight(if(f[i,2]%2, f[i,2]-1, f[i,2])))};

Formula

Multiplicative with a(p^e) = 2^A000120(e) if e is even, and 2^A000120(e-1) if e is odd.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} ((1-1/p) * Sum_{k>=1} a(p^k)/p^k) = 1.55454884667440993654... .

A361175 The sum of the exponential infinitary divisors of n.

Original entry on oeis.org

1, 2, 3, 6, 5, 6, 7, 10, 12, 10, 11, 18, 13, 14, 15, 18, 17, 24, 19, 30, 21, 22, 23, 30, 30, 26, 30, 42, 29, 30, 31, 34, 33, 34, 35, 72, 37, 38, 39, 50, 41, 42, 43, 66, 60, 46, 47, 54, 56, 60, 51, 78, 53, 60, 55, 70, 57, 58, 59, 90, 61, 62, 84, 78, 65, 66, 67
Offset: 1

Views

Author

Amiram Eldar, Mar 03 2023

Keywords

Comments

First differs from A322857 at n = 256.
The exponential infinitary divisors of n = Product_i p(i)^e(i) are all the numbers of the form Product_i p(i)^d(i) where d(i) is an infinitary divisor of e(i).
The number of exponential infinitary divisors of n is A307848(n).

Crossrefs

Similar sequences: A051377, A322857, A323309, A361174.

Programs

  • Mathematica
    idivs[1] = {1}; idivs[n_] := Sort @ Flatten @ Outer[Times, Sequence @@ (FactorInteger[n] /. {p_, e_Integer} :> p^Select[Range[0, e], BitOr[e, #] == e &])];
    f[p_, e_] := Total[p^idivs[e]]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    isidiv(d, f) = {if (d==1, return (1)); for (k=1, #f~, bne = binary(f[k, 2]); bde = binary(valuation(d, f[k, 1])); if (#bde < #bne, bde = concat(vector(#bne-#bde), bde)); for (j=1, #bne, if (! bne[j] && bde[j], return (0)); ); ); return (1); } \\ Michel Marcus at A077609
    ff(p, e) = sumdiv(e, d, if(isidiv(d, factor(e)), p^d, 0));
    a(n) = {my(f=factor(n)); prod(i=1, #f~, ff(f[i, 1], f[i, 2])); }

Formula

Multiplicative with a(p^e) = Sum_{d infinitary divisor of e} p^d.

A365549 The number of exponentially odd divisors of the square root of the largest square dividing n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Sep 08 2023

Keywords

Comments

First differs from A278908, A307848, A323308 and A358260 at n = 64.
The number of exponentially odd divisors of the largest square dividing n is the same as the number of squares dividing n, A046951(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 2 + Floor[(e-2)/4]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> 2 + (x-2)\4, factor(n)[, 2]));

Formula

a(n) = A322483(A000188(n)).
a(n) >= 1 with equality if and only if n is squarefree (A005117).
Multiplicative with a(p^e) = 2 + floor((e-2)/4).
Dirichlet g.f.: zeta(s) * zeta(4*s) * Product_{p prime} (1 + 1/p^(2*s) - 1/p^(4*s)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(4) * Product_{p prime} (1 + 1/p^2 - 1/p^4) = 1.54211628314015874165... .

A369163 a(n) = A000005(A000688(n)).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jan 15 2024

Keywords

Comments

First differs from A007424, A278908, A307848, A323308, A358260 and A365549 at n = 36.
The sums of the first 10^k terms, for k = 1, 2, ..., are 13, 143, 1486, 15054, 151067, 1511982, 15123465, 151245456, 1512484372, 15124927227, ... . From these values the asymptotic mean of this sequence, whose existence was proven by Ivić (1983) (see the Formula section), can be empirically evaluated by 1.512... .

References

  • József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter II, page 73.

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[0, FiniteAbelianGroupCount[n]], {n, 1, 100}]
  • PARI
    a(n) = numdiv(vecprod(apply(numbpart, factor(n)[, 2])));

Formula

Sum_{k=1..n} a(k) = c * n + O(sqrt(n) * log(n)^4), where c = Sum_{k>=1} d(k) * A000005(k) is a constant, d(k) is the asymptotic density of the set {m | A000688(m) = k} (e.g., d(1) = A059956, d(2) = A271971, d(3) appears in A048109) (Ivić, 1983).

A383760 Irregular triangle read by rows in which the n-th row lists the exponential infinitary divisors of n.

Original entry on oeis.org

1, 2, 3, 2, 4, 5, 6, 7, 2, 8, 3, 9, 10, 11, 6, 12, 13, 14, 15, 2, 16, 17, 6, 18, 19, 10, 20, 21, 22, 23, 6, 24, 5, 25, 26, 3, 27, 14, 28, 29, 30, 31, 2, 32, 33, 34, 35, 6, 12, 18, 36, 37, 38, 39, 10, 40, 41, 42, 43, 22, 44, 15, 45, 46, 47, 6, 48, 7, 49, 10, 50
Offset: 1

Views

Author

Amiram Eldar, May 09 2025

Keywords

Comments

First differs from A322791 and A383761 at rows 16, 48, 80, 81, 112, 144, 162, ... and from A361255 at rows 256, 768, 1280, 1792, ... .
An exponential infinitary divisor d of a number n is a divisor d of n such that for every prime divisor p of n, the p-adic valuation of d is an infinitary divisor of the p-adic valuation of n.

Examples

			The first 10 rows are:
  1
  2
  3
  2, 4
  5
  6
  7
  2, 8
  3, 9
  10
		

Crossrefs

Cf. A307848 (row lengths), A361175 (row sums).

Programs

  • Mathematica
    infDivQ[n_, 1] = True; infDivQ[n_, d_] := n > 0 && d > 0 && BitAnd[IntegerExponent[n, First /@ (f = FactorInteger[d])], (e = Last /@ f)] == e;
    expInfDivQ[n_, d_] := Module[{f = FactorInteger[n]}, And @@ MapThread[infDivQ, {f[[;; , 2]], IntegerExponent[d, f[[;; , 1]]]}]]; expInfDivs[1] = {1};
    expInfDivs[n_] := Module[{d = Rest[Divisors[n]]}, Select[d, expInfDivQ[n, #] &]];
    Table[expInfDivs[n], {n, 1, 70}] // Flatten

A368978 The number of bi-unitary divisors of n that are squares (A000290).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2024

Keywords

Comments

First differs from A007424, A278908, A307848, A323308, A358260 and A365549 at n = 32.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], (e + 1)/2, 2*Floor[(e+2)/4]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x%2, (x+1)/2, 2*((x+2)\4)), factor(n)[, 2]));

Formula

Multiplicative with a(p^e) = (e + 1)/2 if e is odd, and 2*floor((e+2)/4) if e is even.
a(n) >= 1, with equality if and only if n is squarefree (A005117).
a(n) <= A286324(n), with equality if and only if n is in A062503.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(4) * Product_{p prime} (1 + 1/p^2 - 1/p^4 + 1/p^5) = 1.58922450321701775833... .

A383865 The number of divisors d of n having the property that for every prime p dividing n the p-adic valuation of d is either 0 or an infinitary divisor of the p-adic valuation of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 3, 3, 4, 2, 6, 2, 4, 4, 3, 2, 6, 2, 6, 4, 4, 2, 6, 3, 4, 3, 6, 2, 8, 2, 3, 4, 4, 4, 9, 2, 4, 4, 6, 2, 8, 2, 6, 6, 4, 2, 6, 3, 6, 4, 6, 2, 6, 4, 6, 4, 4, 2, 12, 2, 4, 6, 5, 4, 8, 2, 6, 4, 8, 2, 9, 2, 4, 6, 6, 4, 8, 2, 6, 3, 4, 2, 12, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, May 12 2025

Keywords

Comments

First differs from A383863 at n = 256.
The number of divisors d of n such that each is a unitary divisor of an exponential infinitary divisor of n (see A383760).
Analogous to the number of (1+e)-divisors (A049599) as exponential infinitary divisors (A383760, A307848) are analogous to exponential divisors (A322791, A049419).
The sum of these divisors is A383866(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 2^DigitCount[e, 2, 1]; d[1] = 1; d[n_] := Times @@ f @@@ FactorInteger[n]; ff[p_, e_] := d[e] + 1; a[1] = 1; a[n_] := Times @@ ff @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    d(n) = vecprod(apply(x -> 2^hammingweight(x), factor(n)[, 2]));
    a(n) = vecprod(apply(x -> 1 + d(x), factor(n)[, 2]));

Formula

Multiplicative with a(p^e) = 1 + A037445(e).
a(n) <= A049599(n), with equality if and only if all the exponents in the prime factorization of n are in A036537.

A380398 The number of unitary divisors of n that are perfect powers (A001597).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jan 23 2025

Keywords

Comments

First differs from A368978 at n = 32, from A007424 and A369163 at n = 36, from A278908, A307848, A358260 and A365549 at n = 64, and from A323308 at n = 72.
a(n) depends only on the prime signature of n (A118914).
The record values are 2^k, for k = 0, 1, 2, ..., and they are attained at A061742(k).
The sum of unitary divisors of n that are perfect powers is A380400(n).

Examples

			a(4) = 2 since 4 have 2 unitary divisors that are perfect powers, 1 and 4 = 2^2.
a(72) = 3 since 72 have 3 unitary divisors that are perfect powers, 1, 8 = 2^3, and 9 = 3^2.
		

Crossrefs

Programs

  • Mathematica
    ppQ[n_] := n == 1 || GCD @@ FactorInteger[n][[;; , 2]] > 1; a[n_] := DivisorSum[n, 1 &, CoprimeQ[#, n/#] && ppQ[#] &]; Array[a, 100]
  • PARI
    a(n) = sumdiv(n, d, gcd(d, n/d) == 1 && (d == 1 || ispower(d)));

Formula

a(n) = Sum_{d|n, gcd(d, n/d) == 1} [d in A001597], where [] is the Iverson bracket.
a(n) = A091050(n) - A380399(n).
a(n) = 1 if and only if n is squarefree (A005117).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1 - Sum_{k>=2} mu(k)*(zeta(k)/zeta(k+1) - 1) = 1.49341326536904597349..., where mu is the Moebius function (A008683).
Showing 1-9 of 9 results.