cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A383695 Exponential infinitary abundant numbers that are not exponential unitary abundant: numbers k such that A361175(k) > 2*k >= A322857(k).

Original entry on oeis.org

476985600, 815673600, 1018886400, 1177862400, 1493049600, 2014214400, 2373638400, 2712326400, 3756614400, 3863865600, 4744454400, 5218617600, 5246841600, 6234681600, 7928121600, 8108755200, 8245036800, 8972409600, 9062726400, 9824774400, 10502150400, 10603756800
Offset: 1

Views

Author

Amiram Eldar, May 05 2025

Keywords

Comments

Exponential infinitary abundant numbers are numbers k such that A361175(k) > 2*k.
All the exponential unitary abundant numbers (A383693) are also exponential infinitary abundant numbers. There are numbers that are exponential infinitary abundant and not exponential unitary abundant. The least is: a(1) = 476985600, which is the 427970th exponential infinitary abundant number.
All the terms are nonsquarefree numbers (A013929), since A361175(k) = k if k is a squarefree number (A005117).
The asymptotic density of this sequence is Sum_{n>=1} f(A383696(n)) = 1.9875...*10^(-9), where f(n) = (6/(Pi^2*n))*Product_{prime p|n}(p/(p+1)). The relative density of this sequence within the exponential infinitary abundant numbers is 2.215... * 10^(-6).

Crossrefs

Subsequence of A013929 and A129575.
A383696 is a subsequence.

Programs

  • Mathematica
    seq[max_] := Module[{prim = seqA383696[max], s = {}, sq}, Do[sq = Select[Range[Floor[max/p]], CoprimeQ[p, #] && SquareFreeQ[#] &]; s = Join[s, p*sq], {p, prim}]; Union[s]]; seq[10^10] (* using the function seqA383696 from A383696 *)
  • PARI
    list(lim) = {my(p = listA383696(lim), s = []); for(i = 1, #p, s = concat(s, apply(x -> p[i]*x, select(x -> gcd(x, p[i]) == 1 && issquarefree(x), vector(lim\p[i], j, j))))); Set(s);} \\ using the function listA383696 from A383696

A361174 The sum of the exponential squarefree exponential divisors (or e-squarefree e-divisors) of n.

Original entry on oeis.org

1, 2, 3, 6, 5, 6, 7, 10, 12, 10, 11, 18, 13, 14, 15, 6, 17, 24, 19, 30, 21, 22, 23, 30, 30, 26, 30, 42, 29, 30, 31, 34, 33, 34, 35, 72, 37, 38, 39, 50, 41, 42, 43, 66, 60, 46, 47, 18, 56, 60, 51, 78, 53, 60, 55, 70, 57, 58, 59, 90, 61, 62, 84, 78, 65, 66, 67, 102
Offset: 1

Views

Author

Amiram Eldar, Mar 03 2023

Keywords

Comments

The exponential squarefree exponential divisors (or e-squarefree e-divisors) of n = Product_i p(i)^e(i) are all the numbers of the form Product_i p(i)^d(i) where d(i) is a squarefree divisor of e(i).
The number of exponential squarefree exponential divisors of n is A278908(n).

Crossrefs

Cf. A278908.
Similar sequences: A051377, A322857, A323309, A361175.

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e, p^# &, SquareFreeQ[#] &]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    ff(p, e) = sumdiv(e, d, if(issquarefree(d), p^d, 0));
    a(n) = {my(f=factor(n)); prod(i=1, #f~, ff(f[i, 1], f[i, 2]));}

Formula

Multiplicative with a(p^e) = Sum_{d|e, d squarefree} p^d.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, c = Product_{p prime} (1 + Sum_{k>=2} (a(p^k) - p*a(p^(k-1)))/p^(2*k)) = 1.08989220899432387559... . - Amiram Eldar, Feb 13 2024

A383760 Irregular triangle read by rows in which the n-th row lists the exponential infinitary divisors of n.

Original entry on oeis.org

1, 2, 3, 2, 4, 5, 6, 7, 2, 8, 3, 9, 10, 11, 6, 12, 13, 14, 15, 2, 16, 17, 6, 18, 19, 10, 20, 21, 22, 23, 6, 24, 5, 25, 26, 3, 27, 14, 28, 29, 30, 31, 2, 32, 33, 34, 35, 6, 12, 18, 36, 37, 38, 39, 10, 40, 41, 42, 43, 22, 44, 15, 45, 46, 47, 6, 48, 7, 49, 10, 50
Offset: 1

Views

Author

Amiram Eldar, May 09 2025

Keywords

Comments

First differs from A322791 and A383761 at rows 16, 48, 80, 81, 112, 144, 162, ... and from A361255 at rows 256, 768, 1280, 1792, ... .
An exponential infinitary divisor d of a number n is a divisor d of n such that for every prime divisor p of n, the p-adic valuation of d is an infinitary divisor of the p-adic valuation of n.

Examples

			The first 10 rows are:
  1
  2
  3
  2, 4
  5
  6
  7
  2, 8
  3, 9
  10
		

Crossrefs

Cf. A307848 (row lengths), A361175 (row sums).

Programs

  • Mathematica
    infDivQ[n_, 1] = True; infDivQ[n_, d_] := n > 0 && d > 0 && BitAnd[IntegerExponent[n, First /@ (f = FactorInteger[d])], (e = Last /@ f)] == e;
    expInfDivQ[n_, d_] := Module[{f = FactorInteger[n]}, And @@ MapThread[infDivQ, {f[[;; , 2]], IntegerExponent[d, f[[;; , 1]]]}]]; expInfDivs[1] = {1};
    expInfDivs[n_] := Module[{d = Rest[Divisors[n]]}, Select[d, expInfDivQ[n, #] &]];
    Table[expInfDivs[n], {n, 1, 70}] // Flatten

A383866 The sum of divisors d of n having the property that for every prime p dividing n the p-adic valuation of d is either 0 or an infinitary divisor of the p-adic valuation of n.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 11, 13, 18, 12, 28, 14, 24, 24, 19, 18, 39, 20, 42, 32, 36, 24, 44, 31, 42, 31, 56, 30, 72, 32, 35, 48, 54, 48, 91, 38, 60, 56, 66, 42, 96, 44, 84, 78, 72, 48, 76, 57, 93, 72, 98, 54, 93, 72, 88, 80, 90, 60, 168, 62, 96, 104, 79, 84, 144
Offset: 1

Views

Author

Amiram Eldar, May 13 2025

Keywords

Comments

First differs from A383864 at n = 256.
The sum of divisors d of n such that each is a unitary divisor of an exponential infinitary divisor of n (see A383760).
Analogous to the sum of (1+e)-divisors (A051378) as exponential infinitary divisors (A383760, A361175) are analogous to exponential divisors (A322791, A051377).
The number of these divisors is A383865(n).

Crossrefs

Programs

  • Mathematica
    infdivs[n_] := If[n == 1, {1}, Sort@ Flatten@ Outer[Times, Sequence @@ (FactorInteger[n] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m &])]];  (* Michael De Vlieger at A077609 *)
    f[p_, e_] := 1 + Total[p^infdivs[e]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    isidiv(d, f) = {if (d==1, return (1)); for (k=1, #f~, bne = binary(f[k, 2]); bde = binary(valuation(d, f[k, 1])); if (#bde < #bne, bde = concat(vector(#bne-#bde), bde)); for (j=1, #bne, if (! bne[j] && bde[j], return (0)); ); ); return (1); }
    infdivs(n) = {d = divisors(n); f = factor(n); idiv = []; for (k=1, #d, if (isidiv(d[k], f), idiv = concat(idiv, d[k])); ); idiv; } \\ Michel Marcus at A077609
    a(n) = {my(f = factor(n), d); prod(i = 1, #f~, d = infdivs(f[i, 2]); 1 + sum(j = 1, #d, f[i, 1]^d[j]));}

Formula

Multiplicative with a(p^e) = 1 + Sum_{d infinitary divisor of e} p^d.
a(n) <= A051378(n), with equality if and only if all the exponents in the prime factorization of n are in A036537.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} f(1/p) = 1.52187097260174705015..., and f(x) = (1-x) * (1 + Sum_{k>=1} (1 + Sum{d infinitary divisor of k} x^(2*k-d))).

A383696 Primitive exponential infinitary abundant numbers that are not primitive exponential unitary abundant: the powerful terms of A383695.

Original entry on oeis.org

476985600, 815673600, 1018886400, 1177862400, 1493049600, 2014214400, 2373638400, 2712326400, 3756614400, 3863865600, 4744454400, 5218617600, 6234681600, 7928121600, 9824774400, 10502150400, 12669753600, 14227718400, 15040569600, 17614598400, 19443513600, 22356230400
Offset: 1

Views

Author

Amiram Eldar, May 06 2025

Keywords

Comments

For squarefree numbers k, eusigma(k) = eisigma(k) = k, where eusigma is the sum of exponential unitary divisors function (A322857), and eisigma is the sum of exponential infinitary divisors function (A361175). Thus, if m is a term (eisigma(m) > 2*m >= eusigma(m)) and k is a squarefree number coprime to m, then eusigma(k*m) = eusigma(k) * eusigma(m) = k * eusigma(m) <= 2*k*m, and eisigma(k*m) = eisigma(k) * eisigma(m) = k * eisigma(m) > 2*k*m, so k*m is an exponential infinitary abundant number that is not exponential unitary abundant (A383695). Therefore, the sequence A383695 can be generated from this sequence by multiplying with coprime squarefree numbers.

Crossrefs

Intersection of A001694 and A383695.

Programs

  • Mathematica
    idivs[1] = {1}; idivs[n_] := Sort @ Flatten @ Outer[Times, Sequence @@ (FactorInteger[n] /. {p_, e_Integer} :> p^Select[Range[0, e], BitOr[e, #] == e &])];
    fi[p_, e_] := Total[p^idivs[e]]; fu[p_, e_] := DivisorSum[e, p^# &, CoprimeQ[#, e/#] &];
    q[n_] := Module[{fct = FactorInteger[n]}, Times @@ fu @@@ fct <= 2*n < Times @@ fi @@@ fct];
    pows[max_] := Union[Flatten[Table[i^2*j^3, {j, 1, Surd[max, 3]}, {i, 1, Sqrt[max/j^3]}]]];
    seqA383696[max_] := Select[pows[max], q]; seqA383696[10^10]
  • PARI
    isidiv(d, f) = {if (d==1, return (1)); for (k=1, #f~, bne = binary(f[k, 2]); bde = binary(valuation(d, f[k, 1])); if (#bde < #bne, bde = concat(vector(#bne-#bde), bde)); for (j=1, #bne, if (! bne[j] && bde[j], return (0)); ); ); return (1); } \\ Michel Marcus at A077609
    fi(p, e) = sumdiv(e, d, if(isidiv(d, factor(e)), p^d, 0));
    fu(p, e) = sumdiv(e, d, if(gcd(d, e/d)==1, p^d));
    isprim(k) = {my(f = factor(k)); prod(i = 1, #f~, fu(f[i, 1], f[i, 2])) <= 2*k && prod(i = 1, #f~, fi(f[i, 1], f[i, 2])) > 2*k;}
    listpows(lim) = my(v = List(), t); for(m = 1, sqrtnint(lim\1, 3), t=m^3; for(n = 1, sqrtint(lim\t), listput(v, t*n^2))); Set(v) \\ Charles R Greathouse IV at A001694
    listA383696(lim) = select(x -> isprim(x), listpows(lim));
Showing 1-5 of 5 results.