cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A383696 Primitive exponential infinitary abundant numbers that are not primitive exponential unitary abundant: the powerful terms of A383695.

Original entry on oeis.org

476985600, 815673600, 1018886400, 1177862400, 1493049600, 2014214400, 2373638400, 2712326400, 3756614400, 3863865600, 4744454400, 5218617600, 6234681600, 7928121600, 9824774400, 10502150400, 12669753600, 14227718400, 15040569600, 17614598400, 19443513600, 22356230400
Offset: 1

Views

Author

Amiram Eldar, May 06 2025

Keywords

Comments

For squarefree numbers k, eusigma(k) = eisigma(k) = k, where eusigma is the sum of exponential unitary divisors function (A322857), and eisigma is the sum of exponential infinitary divisors function (A361175). Thus, if m is a term (eisigma(m) > 2*m >= eusigma(m)) and k is a squarefree number coprime to m, then eusigma(k*m) = eusigma(k) * eusigma(m) = k * eusigma(m) <= 2*k*m, and eisigma(k*m) = eisigma(k) * eisigma(m) = k * eisigma(m) > 2*k*m, so k*m is an exponential infinitary abundant number that is not exponential unitary abundant (A383695). Therefore, the sequence A383695 can be generated from this sequence by multiplying with coprime squarefree numbers.

Crossrefs

Intersection of A001694 and A383695.

Programs

  • Mathematica
    idivs[1] = {1}; idivs[n_] := Sort @ Flatten @ Outer[Times, Sequence @@ (FactorInteger[n] /. {p_, e_Integer} :> p^Select[Range[0, e], BitOr[e, #] == e &])];
    fi[p_, e_] := Total[p^idivs[e]]; fu[p_, e_] := DivisorSum[e, p^# &, CoprimeQ[#, e/#] &];
    q[n_] := Module[{fct = FactorInteger[n]}, Times @@ fu @@@ fct <= 2*n < Times @@ fi @@@ fct];
    pows[max_] := Union[Flatten[Table[i^2*j^3, {j, 1, Surd[max, 3]}, {i, 1, Sqrt[max/j^3]}]]];
    seqA383696[max_] := Select[pows[max], q]; seqA383696[10^10]
  • PARI
    isidiv(d, f) = {if (d==1, return (1)); for (k=1, #f~, bne = binary(f[k, 2]); bde = binary(valuation(d, f[k, 1])); if (#bde < #bne, bde = concat(vector(#bne-#bde), bde)); for (j=1, #bne, if (! bne[j] && bde[j], return (0)); ); ); return (1); } \\ Michel Marcus at A077609
    fi(p, e) = sumdiv(e, d, if(isidiv(d, factor(e)), p^d, 0));
    fu(p, e) = sumdiv(e, d, if(gcd(d, e/d)==1, p^d));
    isprim(k) = {my(f = factor(k)); prod(i = 1, #f~, fu(f[i, 1], f[i, 2])) <= 2*k && prod(i = 1, #f~, fi(f[i, 1], f[i, 2])) > 2*k;}
    listpows(lim) = my(v = List(), t); for(m = 1, sqrtnint(lim\1, 3), t=m^3; for(n = 1, sqrtint(lim\t), listput(v, t*n^2))); Set(v) \\ Charles R Greathouse IV at A001694
    listA383696(lim) = select(x -> isprim(x), listpows(lim));

A323332 The Dedekind psi function values of the powerful numbers, A001615(A001694(n)).

Original entry on oeis.org

1, 6, 12, 12, 24, 30, 36, 48, 72, 56, 96, 144, 108, 180, 216, 132, 150, 192, 288, 182, 336, 360, 432, 360, 324, 384, 576, 306, 648, 392, 380, 672, 720, 864, 672, 792, 900, 768, 552, 1152, 750, 1296, 1080, 1092, 972, 1344, 1440, 870, 1728, 2160, 992, 1584
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2019

Keywords

Comments

The sum of the reciprocals of all the terms of this sequence is Pi^2/6 (A013661).
The asymptotic density of a sequence S that possesses the property that an integer k is a term if and only if its powerful part, A057521(k) is a term, is (1/zeta(2)) * Sum_{n>=1, A001694(n) is a term of S} 1/a(n). Examples for such sequences are the e-perfect numbers (A054979), the exponential abundant numbers (A129575), and other sequences listed in the Crossrefs section. - Amiram Eldar, May 06 2025

Crossrefs

Sequences whose density can be calculated using this sequence: A054979, A129575, A307958, A308053, A321147, A322858, A323310, A328135, A339936, A340109, A364990, A382061, A383693, A383695, A383697.

Programs

  • Mathematica
    psi[1]=1; psi[n_] := n * Times@@(1+1/Transpose[FactorInteger[n]][[1]]); psi /@ Join[{1}, Select[Range@ 1200, Min@ FactorInteger[#][[All, 2]] > 1 &]] (* after T. D. Noe at A001615 and Harvey P. Dale at A001694 *)
  • Python
    from math import isqrt, prod
    from sympy import mobius, integer_nthroot, primefactors
    def A323332(n):
        def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, l = n+x-squarefreepi(integer_nthroot(x,3)[0]), 0
            j = isqrt(x)
            while j>1:
                k2 = integer_nthroot(x//j**2,3)[0]+1
                w = squarefreepi(k2-1)
                c -= j*(w-l)
                l, j = w, isqrt(x//k2**3)
            return c+l
        a = primefactors(m:=bisection(f,n,n))
        return m*prod(p+1 for p in a)//prod(a) # Chai Wah Wu, Sep 14 2024
Showing 1-2 of 2 results.