cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A383697 Exponential squarefree exponential abundant numbers: numbers k such that A361174(k) > 2*k.

Original entry on oeis.org

900, 1764, 4356, 4500, 4900, 6084, 6300, 8820, 9900, 10404, 11700, 12348, 12996, 14700, 15300, 17100, 19044, 19404, 20700, 21780, 22932, 26100, 27900, 29988, 30276, 30420, 30492, 31500, 33300, 33516, 34596, 36900, 38700, 40572, 42300, 42588, 44100, 47700, 47916, 49284, 49500
Offset: 1

Views

Author

Amiram Eldar, May 06 2025

Keywords

Comments

Subsequence of A383693 and first differs from it at n = 21.
All the terms are nonsquarefree numbers (A013929), since A361174(k) = k if k is a squarefree number (A005117).
The least odd term is a(198045) = 225450225, and the least term that is coprime to 6 is a(9.815...*10^17) = 1117347505588495206025.
The least term that is not an exponentially squarefree number (A209061) is a(8.85...*10^1324) = 2^4 * Product_{k=2..248} prime(k)^2 = 1.00786...*10^1328.
The asymptotic density of this sequence is Sum_{n>=1} f(A383698(n)) = 0.000878475..., where f(n) = (6/(Pi^2*n))*Product_{prime p|n}(p/(p+1)).

Crossrefs

Subsequence of A013929, A129575 and A383693.
A383698 is a subsequence.

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e, p^# &, SquareFreeQ[#] &]; q[k_] := Times @@ f @@@ FactorInteger[k] > 2*k; Select[Range[1000], q]
  • PARI
    ff(p, e) = sumdiv(e, d, if(issquarefree(d), p^d, 0));
    isok(k) = {my(f = factor(k)); prod(i=1, #f~, ff(f[i, 1], f[i, 2])) > 2*k; }

A361175 The sum of the exponential infinitary divisors of n.

Original entry on oeis.org

1, 2, 3, 6, 5, 6, 7, 10, 12, 10, 11, 18, 13, 14, 15, 18, 17, 24, 19, 30, 21, 22, 23, 30, 30, 26, 30, 42, 29, 30, 31, 34, 33, 34, 35, 72, 37, 38, 39, 50, 41, 42, 43, 66, 60, 46, 47, 54, 56, 60, 51, 78, 53, 60, 55, 70, 57, 58, 59, 90, 61, 62, 84, 78, 65, 66, 67
Offset: 1

Views

Author

Amiram Eldar, Mar 03 2023

Keywords

Comments

First differs from A322857 at n = 256.
The exponential infinitary divisors of n = Product_i p(i)^e(i) are all the numbers of the form Product_i p(i)^d(i) where d(i) is an infinitary divisor of e(i).
The number of exponential infinitary divisors of n is A307848(n).

Crossrefs

Similar sequences: A051377, A322857, A323309, A361174.

Programs

  • Mathematica
    idivs[1] = {1}; idivs[n_] := Sort @ Flatten @ Outer[Times, Sequence @@ (FactorInteger[n] /. {p_, e_Integer} :> p^Select[Range[0, e], BitOr[e, #] == e &])];
    f[p_, e_] := Total[p^idivs[e]]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    isidiv(d, f) = {if (d==1, return (1)); for (k=1, #f~, bne = binary(f[k, 2]); bde = binary(valuation(d, f[k, 1])); if (#bde < #bne, bde = concat(vector(#bne-#bde), bde)); for (j=1, #bne, if (! bne[j] && bde[j], return (0)); ); ); return (1); } \\ Michel Marcus at A077609
    ff(p, e) = sumdiv(e, d, if(isidiv(d, factor(e)), p^d, 0));
    a(n) = {my(f=factor(n)); prod(i=1, #f~, ff(f[i, 1], f[i, 2])); }

Formula

Multiplicative with a(p^e) = Sum_{d infinitary divisor of e} p^d.

A383698 Primitive exponential squarefree exponential abundant numbers: the powerful terms of A383697.

Original entry on oeis.org

900, 1764, 4356, 4500, 4900, 6084, 10404, 12348, 12996, 19044, 30276, 34596, 44100, 47916, 49284, 60516, 66564, 79092, 79524, 88200, 101124, 108900, 112500, 125316, 132300, 133956, 152100, 161604, 176868, 181476, 191844, 213444, 217800, 220500, 224676, 246924
Offset: 1

Views

Author

Amiram Eldar, May 06 2025

Keywords

Comments

Subsequence of A383694 and first differs from it at n = 11.
The least odd term is a(1345) = 225450225, and the least term that is coprime to 6 is 1117347505588495206025.
For squarefree numbers k, essigma(k) = k, where essigma is the sum of exponential squarefree exponential divisors function (A361174). Thus, if m is a term (essigma(m) > 2*m) and k is a squarefree number coprime to m, then essigma(k*m) = essigma(k) * essigma(m) = k * essigma(m) > 2*k*m, so k*m is an exponential squarefree exponential abundant number. Therefore, the sequence of exponential squarefree exponential abundant numbers (A383697) can be generated from this sequence by multiplying with coprime squarefree numbers.

Crossrefs

Intersection of A001694 and A383697.
Subsequence of A383694.

Programs

  • Mathematica
    fun[p_, e_] := DivisorSum[e, p^# &, SquareFreeQ[#] &]; q[n_] := Min[(f = FactorInteger[n])[[;; , 2]]] > 1 && Times @@ fun @@@ f > 2*n; Select[Range[250000], q]
  • PARI
    fun(p, e) = sumdiv(e, d, if(issquarefree(d), p^d, 0));
    isok(k) = {my(f = factor(k)); ispowerful(f) && prod(i = 1, #f~, fun(f[i, 1], f[i, 2])) > 2*k;}

A383761 Irregular triangle read by rows in which the n-th row lists the exponential squarefree exponential divisors of n.

Original entry on oeis.org

1, 2, 3, 2, 4, 5, 6, 7, 2, 8, 3, 9, 10, 11, 6, 12, 13, 14, 15, 2, 4, 17, 6, 18, 19, 10, 20, 21, 22, 23, 6, 24, 5, 25, 26, 3, 27, 14, 28, 29, 30, 31, 2, 32, 33, 34, 35, 6, 12, 18, 36, 37, 38, 39, 10, 40, 41, 42, 43, 22, 44, 15, 45, 46, 47, 6, 12, 7, 49, 10, 50
Offset: 1

Views

Author

Amiram Eldar, May 09 2025

Keywords

Comments

Differs from A322791, A361255 and A383760 at rows 16, 48, 80, 81, 112, 144, 162, ... .
An exponential squarefree exponential divisor (or e-squarefree e-divisor) d of a number n is a divisor d of n such that for every prime divisor p of n, the p-adic valuation of d is a squarefree divisor of the p-adic valuation of n.

Examples

			The first 10 rows are:
  1
  2
  3
  2, 4
  5
  6
  7
  2, 8
  3, 9
  10
		

Crossrefs

Cf. A278908 (row lengths), A361174 (row sums).

Programs

  • Mathematica
    sqfDivQ[n_, d_] := SquareFreeQ[d] && Divisible[n, d];
    expSqfDivQ[n_, d_] := Module[{f = FactorInteger[n]}, And @@ MapThread[sqfDivQ, {f[[;; , 2]], IntegerExponent[d, f[[;; , 1]]]}]]; expSqfDivs[1] = {1};
    expSqfDivs[n_] := Module[{d = Rest[Divisors[n]]}, Select[d, expSqfDivQ[n, #] &]];
    Table[expSqfDivs[n], {n, 1, 70}] // Flatten

A383867 The sum of divisors d of n having the property that for every prime p dividing n the p-adic valuation of d is either 0 or a squarefree divisor of the p-adic valuation of n.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 11, 13, 18, 12, 28, 14, 24, 24, 7, 18, 39, 20, 42, 32, 36, 24, 44, 31, 42, 31, 56, 30, 72, 32, 35, 48, 54, 48, 91, 38, 60, 56, 66, 42, 96, 44, 84, 78, 72, 48, 28, 57, 93, 72, 98, 54, 93, 72, 88, 80, 90, 60, 168, 62, 96, 104, 79, 84, 144, 68
Offset: 1

Views

Author

Amiram Eldar, May 13 2025

Keywords

Comments

Analogous to the sum of (1+e)-divisors (A051378) as exponential squarefree exponential divisors (A383761, A361174) are analogous to exponential divisors (A322791, A051377).
The number of these divisors is A383863(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 1 + DivisorSum[e, p^# &, SquareFreeQ[#] &]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + sumdiv(f[i, 2], d, if(issquarefree(d), f[i, 1]^d)));}

Formula

Multiplicative with a(p^e) = 1 + Sum_{d squarefree divisor of e} p^d.
a(n) <= A051378(n), with equality if and only if n is an exponentially squarefree number (A209061).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} f(1/p) = 1.47709589136345836345..., and f(x) = (1-x) * (1 + Sum_{k>=1} (1 + Sum{d|k, d squarefree} x^(2*k-d))).
Showing 1-5 of 5 results.