cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A307845 Exponential unitary highly composite numbers: where the number of exponential unitary divisors (A278908) increases to a record.

Original entry on oeis.org

1, 4, 36, 576, 14400, 705600, 57153600, 6915585600, 1168733966400, 337764116289600, 121932845980545600, 64502475523708622400, 40314047202317889000000, 33904113697149344649000000, 32581853262960520207689000000, 44604557116992952164326241000000, 74980260513665152588232411121000000
Offset: 1

Views

Author

Amiram Eldar, May 01 2019

Keywords

Comments

Subsequence of A025487.
All the terms have prime factors with multiplicities which are primorials > 1 (the primorials, A002110, are the unitary highly composite numbers), similarly to exponential highly composite numbers (A318278) whose prime factors have multiplicities which are highly composite numbers (A002182). Thus all the terms are squares. Their square roots are 1, 2, 6, 24, 120, 840, 7560, 83160, 1081080, 18378360, 349188840, 8031343320, 200783583000, 5822723907000, 180504441117000, ...
First differs from A306736 at n = 107. - Georg Fischer, Aug 13 2025

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 2^PrimeNu[e]; a[n_] := Times @@ (f @@@ FactorInteger[n]); s = {}; am = 0; Do[a1 = a[n]; If[a1 > am, am = a1; AppendTo[s, n]], {n, 1, 10^6}]; s

Formula

A278908(a(n)) = 2^(n-1).

A335386 Tri-unitary highly composite numbers: where the number of tri-unitary divisors (A335385) increases to a record.

Original entry on oeis.org

1, 2, 6, 24, 120, 840, 7560, 83160, 1081080, 18378360, 349188840, 8031343320, 200783583000, 5822723907000, 180504441117000, 6678664321329000, 273825237174489000, 11774485198503027000, 553400804329642269000, 27116639412152471181000, 1437181888844080972593000
Offset: 1

Views

Author

Amiram Eldar, Jun 04 2020

Keywords

Crossrefs

Analogous sequences: A002182 (highly composite), A002110 (unitary), A037992 (infinitary), A293185 (bi-unitary), A318278 (exponential), A306736 (exponential infinitary), A307845 (exponential unitary), A309141 (nonunitary), A322484 (semi-unitary).
Cf. A335385.

Programs

  • Mathematica
    f[p_, e_] := If[e == 3 || e == 6, 4, 2]; d[1] = 1; d[n_] := Times @@ (f @@@ FactorInteger[n]); dm = 0; s = {}; Do[If[(d1 = d[n]) > dm, dm = d1; AppendTo[s, n]], {n, 1, 1100000}]; s

Formula

A335385(a(n)) = 2^(n-1).

A365681 Numbers with a record number of exponentially squarefree divisors.

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 36, 60, 120, 180, 360, 840, 1260, 2520, 6300, 7560, 12600, 27720, 69300, 83160, 138600, 332640, 360360, 900900, 1081080, 1801800, 4324320, 5405400, 12612600, 17297280, 18378360, 30630600, 73513440, 86486400, 91891800, 214414200, 294053760
Offset: 1

Views

Author

Amiram Eldar, Sep 15 2023

Keywords

Comments

Indices of records of A365680.
The corresponding record values are 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 32, 36, 48, 54, 64, 72, 96, ... (see the link for more values).

Crossrefs

Cf. A365680.
Subsequence of A025487.
Similar sequences: A306736, A307845, A318278.

Programs

  • Mathematica
    f[p_, e_] := Count[Range[e], ?SquareFreeQ] + 1; d[1] = 1; d[n] := Times @@ f @@@ FactorInteger[n]; v = Cases[Import["https://oeis.org/A025487/b025487.txt", "Table"], {, }][[;; , 2]]; seq = {}; dm = 0; Do[If[(dk = d[v[[k]]]) > dm, dm = dk; AppendTo[seq, v[[k]]]], {k, 1, Length[v]}]; seq

A348342 Noninfinitary highly composite numbers: where the number of noninfinitary divisors (A348341) increases to a record.

Original entry on oeis.org

1, 4, 12, 16, 36, 48, 144, 240, 576, 720, 1680, 2880, 3600, 5040, 11520, 14400, 15120, 20160, 25200, 45360, 55440, 80640, 100800, 166320, 176400, 226800, 277200, 498960, 720720, 887040, 1108800, 1587600, 1940400, 2494800, 3603600, 6486480, 9979200, 11531520, 14414400
Offset: 1

Views

Author

Amiram Eldar, Oct 13 2021

Keywords

Comments

The record numbers of noninfinitary divisors are 0, 1, 2, 3, 5, 6, 11, 12, 13, 22, 24, 26, 37, 44, 46, ... (see the link for more values).

Crossrefs

Cf. A348341.
Subsequence of A025487.
Similar sequences: A002182, A002110 (unitary), A037992 (infinitary), A293185, A306736, A307845, A309141, A318278, A322484, A335386.

Programs

  • Mathematica
    nid[1] = 0; nid[n_] := DivisorSigma[0, n] - Times @@ Flatten[2^DigitCount[#, 2, 1] & /@ FactorInteger[n][[;; , 2]]]; dm = -1; s = {}; Do[If[(d = nid[n]) > dm, dm = d; AppendTo[s, n]], {n, 1, 10^6}]; s

A348632 Nonexponential highly composite numbers: where the number of nonexponential divisors (A160097) increases to a record.

Original entry on oeis.org

1, 6, 12, 24, 30, 60, 120, 210, 240, 360, 420, 720, 840, 1260, 1680, 2520, 3360, 5040, 7560, 9240, 10080, 15120, 18480, 25200, 27720, 36960, 50400, 55440, 83160, 110880, 166320, 221760, 277200, 332640, 480480, 498960, 554400, 665280, 720720, 1081080, 1441440
Offset: 1

Views

Author

Amiram Eldar, Oct 26 2021

Keywords

Comments

The corresponding record values are 1, 3, 4, 6, 7, 10, 14, 15, 17, 20, 22, 24, ... (see the link for more values).

Crossrefs

Cf. A160097.
Subsequence of A025487.
Similar sequences: A002182, A002110 (unitary), A037992 (infinitary), A293185, A306736, A307845, A309141, A318278, A322484, A335386.

Programs

  • Mathematica
    f1[p_, e_] := e + 1; f2[p_, e_] := DivisorSigma[0, e]; ned[1] = 1; ned[n_] := Times @@ f1 @@@ (f = FactorInteger[n]) - Times @@ f2 @@@ f; dm = -1; s = {}; Do[If[(d = ned[n]) > dm, dm = d; AppendTo[s, n]], {n, 1, 10^6}]; s

A353899 Indices of records in A353898.

Original entry on oeis.org

1, 2, 4, 6, 12, 30, 36, 60, 180, 420, 900, 1260, 4620, 6300, 13860, 44100, 55440, 69300, 180180, 485100, 720720, 900900, 3063060, 6306300, 12252240, 15315300, 58198140, 107207100, 232792560, 290990700, 1163962800, 2036934900, 5354228880, 6692786100, 22406283900
Offset: 1

Views

Author

Amiram Eldar, May 10 2022

Keywords

Comments

First differs from A333931 at n=23.
The corresponding record values are 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 27, 36, 48, 54, 72, 81, 96, 108, 144, 162, ... (see the link for more values).

Crossrefs

Subsequence of A025487 and A138302.
Similar sequences: A002182, A002110 (unitary), A037992 (infinitary), A293185, A306736, A307845, A309141, A318278, A322484, A335386.

Programs

  • Mathematica
    f[p_, e_] := Floor[Log2[e]] + 2; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; seq = {}; sm = 0; Do[s1 = s[n]; If[s1 > sm, sm = s1; AppendTo[seq, n]], {n, 1, 10^6}]; seq

A358263 Numbers with a record number of noninfinitary square divisors.

Original entry on oeis.org

1, 16, 144, 256, 1296, 2304, 20736, 57600, 331776, 518400, 2822400, 8294400, 12960000, 25401600, 132710400, 207360000, 228614400, 406425600, 635040000, 2057529600, 3073593600, 6502809600, 10160640000, 27662342400, 31116960000, 51438240000, 76839840000, 248961081600
Offset: 1

Views

Author

Amiram Eldar, Nov 06 2022

Keywords

Comments

Numbers m such that A358261(m) > A358261(k) for all k < m.
The corresponding record values are 0, 1, 2, 3, 5, 6, 11, 12, 13, 22, 24, 26, 37, 44, 46, 47, 48, ... (see the link for more values).

Crossrefs

Subsequence of A025487.
Similar sequences: A002182, A002110 (unitary), A037992 (infinitary), A293185, A306736, A307845, A309141, A318278, A322484, A335386, A348632, A358253.

Programs

  • Mathematica
    f1[p_, e_] := 1 + Floor[e/2]; f2[p_, e_] := 2^DigitCount[If[OddQ[e], e - 1, e], 2, 1]; f[1] = 0; f[n_] := Times @@ f1 @@@ (fct = FactorInteger[n]) - Times @@ f2 @@@ fct; s = {}; fmax = -1; Do[If[(fn = f[n]) > fmax, fmax = fn; AppendTo[s, n]], {n, 1, 6*10^5}]; s
  • PARI
    s(n) = {my(f = factor(n));  prod(i=1, #f~, 1+f[i,2]\2) - prod(i=1, #f~, 2^hammingweight(if(f[i,2]%2, f[i,2]-1, f[i,2])))};
    lista(nmax) = {my(smax = -1, sn); for(n = 1, nmax, sn = s(n); if(sn > smax, smax = sn; print1(n, ", "))); }
Showing 1-7 of 7 results.