cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307855 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 - 2*x + (1-4*k)*x^2).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 7, 1, 1, 1, 7, 13, 19, 1, 1, 1, 9, 19, 49, 51, 1, 1, 1, 11, 25, 91, 161, 141, 1, 1, 1, 13, 31, 145, 331, 581, 393, 1, 1, 1, 15, 37, 211, 561, 1441, 2045, 1107, 1, 1, 1, 17, 43, 289, 851, 2841, 5797, 7393, 3139, 1
Offset: 0

Views

Author

Seiichi Manyama, May 01 2019

Keywords

Examples

			Square array begins:
   1,   1,    1,    1,     1,     1,     1, ...
   1,   1,    1,    1,     1,     1,     1, ...
   1,   3,    5,    7,     9,    11,    13, ...
   1,   7,   13,   19,    25,    31,    37, ...
   1,  19,   49,   91,   145,   211,   289, ...
   1,  51,  161,  331,   561,   851,  1201, ...
   1, 141,  581, 1441,  2841,  4901,  7741, ...
   1, 393, 2045, 5797, 12489, 22961, 38053, ...
		

Crossrefs

Columns k=0..6 give A000012, A002426, A084601, A084603, A084605, A098264, A098265.
Main diagonal gives A187018.

Programs

  • Mathematica
    T[n_, k_] := Sum[If[k == j == 0, 1, k^j] * Binomial[n, j] * Binomial[n-j, j], {j, 0, Floor[n/2]}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 13 2021 *)

Formula

A(n,k) is the coefficient of x^n in the expansion of (1 + x + k*x^2)^n.
A(n,k) = Sum_{j=0..floor(n/2)} k^j * binomial(n,j) * binomial(n-j,j) = Sum_{j=0..floor(n/2)} k^j * binomial(n,2*j) * binomial(2*j,j).
D-finite with recurrence: n * A(n,k) = (2*n-1) * A(n-1,k) - (1-4*k) * (n-1) * A(n-2,k).