cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307859 Consider the non-unitary aliquot parts, in ascending order, of a composite number. Take their sum and repeat the process deleting the minimum number and adding the previous sum. The sequence lists the numbers that after some iterations reach a sum equal to themselves.

Original entry on oeis.org

24, 112, 189, 578, 1984, 2125, 3993, 5043, 9583, 19197, 32512, 126445, 149565, 175689, 225578, 236883, 1589949, 1862935, 1928125, 3171174, 5860526, 6149405, 11442047, 16731741, 60634549, 75062535, 134201344, 177816209, 1162143369, 4474779517, 10369035821
Offset: 1

Views

Author

Paolo P. Lava, May 02 2019

Keywords

Examples

			Divisors of 578 are 1, 2, 17, 34, 289, 578. Non-unitary aliquot parts are 17 and 34.
We have:
   17 +  34 =  51;
   34 +  51 =  85;
   51 +  85 = 136;
   85 + 136 = 221;
  136 + 221 = 357;
  221 + 357 = 578.
		

Crossrefs

Programs

  • Maple
    with(numtheory):P:=proc(q,h) local a,b,c,k,n,t,v; v:=array(1..h);
    for n from 1 to q do if not isprime(n) then b:=sort([op(divisors(n))]);
    a:=[]; for k from 2 to nops(b)-1 do if gcd(b[k],n/b[k])>1 then
    a:=[op(a),b[k]]; fi; od; b:=nops(a); if b>1 then c:=0;
    for k from 1 to b do v[k]:=a[k]; c:=c+a[k]: od;
    t:=b+1; v[t]:=c; while v[t]
    				
  • Mathematica
    aQ[n_] := CompositeQ[n] && Module[{s = Select[Divisors[n], GCD[#, n/#] != 1 &]}, If[Length[s] < 2, False, While[Total[s] < n, AppendTo[s, Total[s]]; s = Rest[s]]; Total[s] == n]]; Select[Range[10^4], aQ] (* Amiram Eldar, May 07 2019 *)

Extensions

a(20)-a(31) from Amiram Eldar, May 07 2019