A307868 Decimal expansion of the asymptotic mean of phi(k)/psi(k), where phi(k) is Euler totient function (A000010) and psi(k) is Dedekind psi function (A001615).
4, 7, 1, 6, 8, 0, 6, 1, 3, 6, 1, 2, 9, 9, 7, 8, 6, 8, 0, 7, 5, 2, 3, 5, 6, 3, 3, 0, 8, 0, 4, 8, 2, 0, 8, 7, 4, 2, 5, 9, 2, 6, 3, 8, 2, 0, 0, 6, 9, 8, 6, 8, 8, 3, 6, 3, 5, 7, 3, 7, 2, 5, 5, 4, 1, 7, 7, 3, 2, 1, 1, 6, 7, 5, 9, 6, 8, 2, 7, 4, 4, 0, 9, 6, 2, 1, 0, 0, 2, 7, 3, 7, 6, 9, 4, 9, 0, 2, 3, 0, 3, 1, 3, 0, 1, 1
Offset: 0
Examples
0.47168061361299786807523563308048208742592638200698...
Links
- V. Sitaramaiah and M. V. Subbarao, Some asymptotic formulae involving powers of arithmetic functions, Number Theory, Madras 1987, Springer, 1989, pp. 201-234, alternative link.
Programs
-
Mathematica
$MaxExtraPrecision = 1000; m = 1000; c = LinearRecurrence[{-2, 1, 2}, {0, -4, 6}, m]; RealDigits[(2/3) * Exp[NSum[Indexed[c, n]*(PrimeZetaP[n] - 1/2^n)/n, {n, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]
-
PARI
prodeulerrat(1 - 2/(p*(p+1))) \\ Vaclav Kotesovec, Sep 19 2020
Formula
Equals lim_{m->oo} (1/m)*Sum_{k=1..m} phi(k)/psi(k).
Equals Product_{p prime} (1 - 2/(p * (p+1))).
Equals A065472 / zeta(2). - Amiram Eldar, Sep 18 2022
Extensions
More digits from Vaclav Kotesovec, Sep 19 2020
Comments