A306443 Number of ways of partitioning the set of the first n primes into two subsets whose sums differ at most by 1.
1, 0, 1, 1, 1, 1, 3, 2, 6, 5, 16, 13, 45, 39, 138, 122, 439, 392, 1417, 1286, 4698, 4341, 16021, 14860, 55146, 51085, 190274, 178402, 671224, 634511, 2404289, 2260918, 8535117, 8067237, 30635869, 29031202, 110496946, 105250449, 401422210, 383579285, 1467402238
Offset: 0
Keywords
Examples
a(8) = 6: 2,17,19/3,5,7,11,13; 3,5,11,19/2,7,13,17; 3,5,13,17/2,7,11,19; 3,7,11,17/2,5,13,19; 2,3,5,11,17/7,13,19; 2,5,7,11,13/3,17,19. a(9) = 5: 2,3,5,17,23/7,11,13,19; 2,5,7,13,23/3,11,17,19; 2,5,7,17,19/3,11,13,23; 2,5,11,13,19/3,7,17,23; 2,7,11,13,17/3,5,19,23.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2000
- Wikipedia, Partition problem
Programs
-
Maple
s:= proc(n) s(n):= `if`(n=0, 1, ithprime(n)+s(n-1)) end: b:= proc(n, i) option remember; `if`(i=0, `if`(n<=1, 1, 0), `if`(n>s(i), 0, (p->b(n+p, i-1)+b(abs(n-p), i-1))(ithprime(i)))) end: a:= n-> ceil(b(0, n)/2): seq(a(n), n=0..45);
-
Mathematica
s[n_] := s[n] = If[n == 0, 1, Prime[n] + s[n - 1]]; b[n_, i_] := b[n, i] = If[i==0, If[n <= 1, 1, 0], If[n > s[i], 0, Function[ p, b[n + p, i - 1] + b[Abs[n - p], i - 1]][Prime[i]]]]; a[n_] := Ceiling[b[0, n]/2]; a /@ Range[0, 45] (* Jean-François Alcover, Apr 30 2020, after Alois P. Heinz *)