cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307945 Exponential convolution of A015128 with themselves.

Original entry on oeis.org

1, 4, 16, 64, 252, 968, 3616, 13120, 46432, 160772, 545856, 1821056, 5979520, 19350552, 61795968, 194964672, 608261628, 1878140024, 5743681784, 17408223328, 52320105080, 156011658272, 461763417056, 1357182242560, 3962591708576, 11497241014652
Offset: 0

Views

Author

Vaclav Kotesovec, May 07 2019

Keywords

Crossrefs

Programs

  • Maple
    S:= series(1/JacobiTheta4(0,q),q,101):
    f:= n -> add(binomial(n,k)*coeff(S,q,k)*coeff(S,q,n-k),k=0..n):
    map(f, [$0..100]); # Robert Israel, May 08 2019
  • Mathematica
    A015128[n_]:=Sum[PartitionsP[n-k]*PartitionsQ[k], {k, 0, n}]; Table[Sum[Binomial[n, k]*A015128[k]*A015128[n-k], {k, 0, n}], {n, 0, 25}]

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * A015128(k) * A015128(n-k).
a(n) ~ 2^(n-4) * exp(Pi*sqrt(2*n)) / n^2.