A307958 Coreful perfect numbers: numbers k such that csigma(k) = 2*k, where csigma(k) is the sum of the coreful divisors of k (A057723).
36, 180, 252, 392, 396, 468, 612, 684, 828, 1044, 1116, 1176, 1260, 1332, 1476, 1548, 1692, 1908, 1960, 1980, 2124, 2196, 2340, 2412, 2556, 2628, 2772, 2844, 2988, 3060, 3204, 3276, 3420, 3492, 3636, 3708, 3852, 3924, 4068, 4140, 4284, 4312, 4572, 4716, 4788
Offset: 1
Keywords
Examples
36 is in the sequence since its coreful divisors are 6, 12, 18, 36, whose sum is 72 = 2 * 36.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- G. E. Hardy and M. V. Subbarao, Highly powerful numbers, Congress. Numer., Vol. 37 (1983), pp. 277-307. (Annotated scanned copy)
Programs
-
Mathematica
f[p_,e_] := (p^(e+1)-1)/(p-1)-1; a[1]=1; a[n_] := Times @@ (f @@@ FactorInteger[n]); s={}; Do[If[a[n] == 2n, AppendTo[s,n]], {n, 1, 10^6}]; s
-
PARI
rad(n) = factorback(factorint(n)[, 1]); \\ A007947 s(n) = rad(n)*sigma(n/rad(n)); \\ A057723 isok(n) = s(n) == 2*n; \\ Michel Marcus, May 14 2019
Comments