A307991 Fibonacci numbers of the form k^2 - k - 1 with integer k.
1, 5, 55, 89
Offset: 1
Examples
89 is in the sequence since 89 = 10^2 - 10 - 1 or equivalently 1/89 = 1/10^2 + 1/10^3 + 2/10^4 + 3/10^5 + 5/10^6 + ... This is why the first digits of the decimal expansion of 1/89 = 0.011235... are the first terms of the Fibonacci sequence.
References
- Fenton Stancliff, A curious property of a_11, Scripta Math., Vol. 19 (1953), p. 126.
Links
- B. M. M. de Weger, A Curious Property of the Eleventh Fibonacci Number, The Rocky Mountain Journal of Mathematics, Vol. 25, No. 3 (1995), pp. 977-994.
Programs
-
Mathematica
Select[Fibonacci[Range[2, 20]], IntegerQ[Sqrt[4# + 5]] &]
Comments