A308004 a(n) = smallest nonnegative number that requires n applications of the Sisyphus function x -> A073053(x) to reach 123.
123, 101, 0, 20, 11, 1
Offset: 0
Examples
0 -> 101 -> 123 reaches 123 in two steps, so a(2) = 0. 1 -> 11 -> 22 -> 202 -> 303 -> 123 reaches 123 in 5 steps, so a(5) = 1.
References
- M. E. Coppenbarger, Iterations of a modified Sisyphus function, Fib. Q., 56 (No. 2, 2018), 130-141.
Programs
-
Mathematica
id[n_]:=IntegerDigits[n]; il[n_]:=If[n!=0,IntegerLength[n],1] den[n_]:=FromDigits[{Length[Select[id[n],EvenQ]],Length[Select[id[n],OddQ]],il[n]}]; numD[n_]:=Length[FixedPointList[den,n]]-2; a308004[n_]:=Module[{k=0},While[numD[k]!=n,k++];k]; a308004/@Range[0,5] (* Ivan N. Ianakiev, May 13 2019 *)
Comments