A308025 a(n) = n*(2*n - 3 - (-1)^n)*(5*n - 2 + (-1)^n)/16.
0, 0, 9, 19, 55, 87, 168, 234, 378, 490, 715, 885, 1209, 1449, 1890, 2212, 2788, 3204, 3933, 4455, 5355, 5995, 7084, 7854, 9150, 10062, 11583, 12649, 14413, 15645, 17670, 19080, 21384, 22984, 25585, 27387, 30303, 32319, 35568, 37810, 41410, 43890, 47859
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for sequences related to partitions
- Index entries for linear recurrences with constant coefficients, signature (1,3,-3,-3,3,1,-1).
Crossrefs
Cf. A294286.
Programs
-
Mathematica
Table[n*(2 n - 3 - (-1)^n)*(5 n - 2 + (-1)^n)/16, {n, 60}]
-
PARI
concat([0,0], Vec(x^3*(9 + 10*x + 9*x^2 + 2*x^3) / ((1 - x)^4*(1 + x)^3) + O(x^40))) \\ Colin Barker, May 17 2019
Formula
a(n) = Sum_{i=1..floor((n-1)/2)} i^2 + 2*(n-i)^2.
a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7).
G.f.: x^3*(9 + 10*x + 9*x^2 + 2*x^3) / ((1 - x)^4*(1 + x)^3). - Colin Barker, May 17 2019
Comments