A308029 Numbers whose sum of coreful divisors is equal to the sum of non-coreful divisors.
6, 1638, 55860, 168836850, 12854283750
Offset: 1
Examples
Divisors of 1638 are 1, 2, 3, 6, 7, 9, 13, 14, 18, 21, 26, 39, 42, 63, 78, 91, 117, 126, 182, 234, 273, 546, 819, 1638. The coreful ones are 546, 1638 and 1 + 2 + 3 + 6 + 7 + 9 + 13 + 14 + 18 + 21 + 26 + 39 + 42 + 63 + 78 + 91 + 117 + 126 + 182 + 234 + 273 + 819 = 546 + 1638 = 2184.
Links
- G. E. Hardy and M. V. Subbarao, Highly powerful numbers, Congress. Numer. 37 (1983), 277-307. (Annotated scanned copy)
Programs
-
Maple
with(numtheory): P:=proc(q) local a, k, n; for n from 1 to q do a:=mul(k, k=factorset(n)); if sigma(n)=2*a*sigma(n/a) then print(n); fi; od; end: P(10^7);
-
Mathematica
f[p_, e_] := (p^(e + 1) - 1)/(p - 1); fc[p_, e_] := f[p, e] - 1; csigmaQ[n_] := Times @@ (fc @@@ FactorInteger[n]) == Times @@ (f @@@ FactorInteger[n])/2; Select[Range[2, 10^5], csigmaQ] (* Amiram Eldar, May 11 2019 *)
-
PARI
rad(n) = factorback(factorint(n)[, 1]); \\ A007947 s(n) = my(rn=rad(n)); rn*sigma(n/rn); \\ A057723 isok(n) = 2*s(n) == sigma(n); \\ Michel Marcus, May 11 2019
Extensions
a(4)-a(5) from Giovanni Resta, May 10 2019
Comments