cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308034 Number of partitions of n into 3 parts with at least 1 part that is a nondivisor of n.

Original entry on oeis.org

0, 0, 0, 0, 2, 1, 4, 4, 6, 8, 10, 9, 14, 16, 18, 20, 24, 25, 30, 32, 36, 40, 44, 45, 52, 56, 60, 64, 70, 73, 80, 84, 90, 96, 102, 105, 114, 120, 126, 132, 140, 145, 154, 160, 168, 176, 184, 189, 200, 208, 216, 224, 234, 241, 252, 260, 270, 280, 290, 297, 310
Offset: 1

Views

Author

Wesley Ivan Hurt, May 10 2019

Keywords

Examples

			7 = 2 + (1 + 4) = 2 + (2 + 3) = 3 + (1 + 3) = 5 + (1 + 1); the first integer corresponds to one part that is a nondivisor of 7. So a(7) = 4. - _Bernard Schott_, May 12 2019
Figure 1: The partitions of n into 3 parts for n = 3, 4, ...
                                                          1+1+8
                                                   1+1+7  1+2+7
                                                   1+2+6  1+3+6
                                            1+1+6  1+3+5  1+4+5
                                     1+1+5  1+2+5  1+4+4  2+2+6
                              1+1+4  1+2+4  1+3+4  2+2+5  2+3+5
                       1+1+3  1+2+3  1+3+3  2+2+4  2+3+4  2+4+4
         1+1+1  1+1+2  1+2+2  2+2+2  2+2+3  2+3+3  3+3+3  3+3+4    ...
-----------------------------------------------------------------------
  n  |     3      4      5      6      7      8      9     10      ...
-----------------------------------------------------------------------
a(n) |     0      0      2      1      4      4      6      8      ...
-----------------------------------------------------------------------
- _Wesley Ivan Hurt_, Sep 07 2019
		

Crossrefs

Cf. A284825.

Programs

  • Mathematica
    Table[Sum[Sum[1 - (1 - Ceiling[n/i] + Floor[n/i])*(1 - Ceiling[n/k] + Floor[n/k])*(1 - Ceiling[n/(n - i - k)] + Floor[n/(n - i - k)]), {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}]

Formula

a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} 1 - chi(n/i) * chi(n/k) * chi(n/(n-i-k)), where chi(n) = 1 - ceiling(n) + floor(n).
Conjectures from Colin Barker, May 11 2019: (Start)
G.f.: x^5*(2 - 3*x + 6*x^2 - 6*x^3 + 6*x^4 - 3*x^5) / ((1 - x)^3*(1 + x)*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)).
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) + a(n-6) - 2*a(n-7) + 2*a(n-8) - 2*a(n-9) + a(n-10) for n>10.
(End)