cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308039 Decimal expansion of lim_{i->oo} c(i)/i, where c(i) is the number of integers k such that sigma(k) < i (A074753).

Original entry on oeis.org

6, 7, 2, 7, 3, 8, 3, 0, 9, 2, 1, 7, 4, 0, 9, 7, 9, 5, 3, 2, 7, 6, 8, 7, 2, 0, 3, 0, 8, 8, 9, 8, 6, 8, 6, 8, 9, 7, 0, 8, 7, 6, 8, 2, 9, 4, 1, 0, 2, 3, 2, 7, 3, 1, 2, 3, 5, 7, 1, 4, 5, 1, 8, 8, 2, 1, 9, 0, 9, 0, 2, 4, 3, 3, 3, 8, 3, 3, 8, 5, 7, 2, 2, 9, 1, 3, 6, 5, 4, 7, 1, 6, 0, 5, 8, 5, 2, 5, 4, 6, 7, 5, 9, 4, 4, 4
Offset: 0

Views

Author

Amiram Eldar, May 10 2019

Keywords

Comments

Erdös proved the existence of this constant. Dressler found its explicit form.

Examples

			0.6727383092174097953276872030889868689708768294102327312357145188219...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; m = 1000; f[p_] := (1 - 1/p)*(p - 1)*Sum[1/(p^k - 1), {k, 1, m}]; c = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, m}], x]*Range[0, m]]; RealDigits[f[2]*Exp[NSum[Indexed[c, k]*(PrimeZetaP[k] - 1/2^k)/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]

Formula

Equals Product_{p prime} (1 - 1/p) * Sum_{k>=0} 1/sigma(p^k) = Product_{p prime} ((p - 1)^2/p) * Sum_{k>=1} 1/(p^k - 1) = Product_{p prime} 1 - ((p - 1)^2/p) * Sum_{k>=1} 1/((p^k - 1)*(p^(k+1) - 1)).
Equals lim_{n->oo} (1/log(n))*Sum_{k=1..n} 1/sigma(k).
Equals lim_{n->oo} (1/n) * Sum_{k=1..n} k/sigma(k) (the asymptotic mean of k/sigma(k)). - Amiram Eldar, Dec 23 2020
Sum_{k=1..n} 1/A000203(k) ~ Y1*log(n) + Y1*(gamma + Y2), where gamma = A001620, Y1 = A308039, Y2 = A345327. - Vaclav Kotesovec, Jun 14 2021

Extensions

More digits from Vaclav Kotesovec, Jun 13 2021