cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A054973 Number of numbers whose divisors sum to n.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 2, 1, 1, 1, 0, 0, 2, 0, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 1, 2, 2, 0, 0, 0, 1, 0, 1, 1, 1, 0, 3, 0, 1, 0, 0, 0, 3, 0, 0, 0, 0, 0, 2, 0, 2, 1, 0, 0, 3, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 5, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 0, 3, 1, 0, 1, 0, 0, 4, 0
Offset: 1

Views

Author

Henry Bottomley, May 16 2000

Keywords

Comments

a(n) = frequency of values n in A000203(m), where A000203(m) = sum of divisors of m. a(n) >= 1 for such n that A175192(n) = 1, a(n) >= 1 if A000203(m) = n for any m. a(n) = 0 for such n that A175192(n) = 0, a(n) = 0 if A000203(m) = n has no solution. - Jaroslav Krizek, Mar 01 2010
First occurrence of k: 2, 1, 12, 24, 96, 72, ..., = A007368. - Robert G. Wilson v, May 14 2014
a(n) is also the number of positive terms in the n-th row of triangle A299762. - Omar E. Pol, Mar 14 2018
Also the number of integer partitions of n whose parts form the set of divisors of some number (necessarily the greatest part). The Heinz numbers of these partitions are given by A371283. For example, the a(24) = 3 partitions are: (23,1), (15,5,3,1), (14,7,2,1). - Gus Wiseman, Mar 22 2024

Examples

			a(12) = 2 since 11 has factors 1 and 11 with 1 + 11 = 12 and 6 has factors 1, 2, 3 and 6 with 1 + 2 + 3 + 6 = 12.
		

Crossrefs

Cf. A000203 (sum-of-divisors function).
For partial sums see A074753.
The non-strict version is A371284, ranks A371288.
These partitions have ranks A371283, unsorted version A275700.
A000005 counts divisors, row-lengths of A027750.
A000041 counts integer partitions, strict A000009.

Programs

  • Mathematica
    nn = 105; t = Table[0, {nn}]; k = 1; While[k < 6 nn^(3/2)/Pi^2, d = DivisorSigma[1, k]; If[d < nn + 1, t[[d]]++]; k++]; t (* Robert G. Wilson v, May 14 2014 *)
    Table[Length[Select[IntegerPartitions[n],#==Reverse[Divisors[Max@@#]]&]],{n,30}] (* Gus Wiseman, Mar 22 2024 *)
  • PARI
    a(n)=v = vector(0); for (i = 1, n, if (sigma(i) == n, v = concat(v, i));); #v; \\ Michel Marcus, Oct 22 2013
    
  • PARI
    a(n)=sum(k=1,n,sigma(k)==n) \\ Charles R Greathouse IV, Nov 12 2013
    
  • PARI
    first(n)=my(v=vector(n),t); for(k=1,n, t=sigma(n); if(t<=n, v[t]++)); v \\ Charles R Greathouse IV, Mar 08 2017
    
  • PARI
    A054973(n)=#invsigma(n) \\ See Alekseyev link for invsigma(). - M. F. Hasler, Nov 21 2019

Formula

Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A308039. - Amiram Eldar, Dec 23 2024

Extensions

Incorrect comment deleted by M. F. Hasler, Nov 21 2019

A074753 Number of integers k such that sigma(k) < n.

Original entry on oeis.org

0, 1, 1, 2, 3, 3, 4, 5, 6, 6, 6, 6, 8, 9, 10, 11, 11, 11, 13, 13, 14, 14, 14, 14, 17, 17, 17, 17, 18, 18, 19, 21, 23, 23, 23, 23, 24, 24, 25, 26, 27, 27, 30, 30, 31, 31, 31, 31, 34, 34, 34, 34, 34, 34, 36, 36, 38, 39, 39, 39, 42, 42, 43, 44, 44, 44, 44, 44, 45, 45, 45, 45, 50, 50
Offset: 1

Views

Author

Benoit Cloitre, Sep 28 2002

Keywords

Crossrefs

Partial sums of A054973.

Programs

  • Maple
    N:= 100: # to get a(1)..a(N)
    V:= Vector(N):
    for n from 1 to N-2 do
      s:= numtheory:-sigma(n)+1;
      if s <= N then V[s]:= V[s]+1 fi;
    od:
    ListTools:-PartialSums(V); # Robert Israel, Jan 08 2018
  • Mathematica
    Table[Length[Select[Range[n], DivisorSigma[1,#] < n&]], {n, 1, 100}] (* Vaclav Kotesovec, Feb 16 2019 *)
  • PARI
    a(n)=sum(i=1,n,if(1+sign(sigma(i)-n),0,1))
    
  • PARI
    list(nmax) = my(s = 0); for(n = 1, nmax, s += invsigmaNum(n); print1(s, ", ")); \\ Amiram Eldar, Dec 23 2024, using Max Alekseyev's invphi.gp

Formula

a(n) = card( k : sigma(k) < n ).
a(n) is asymptotic to c*n with c = 0.67...
a(n) = c * n + o(n), where c = 0.6727383... = A308039 (Dressler, 1972). - Amiram Eldar, Dec 23 2024

A212717 Numerator of Sum_{k=1..n} 1/sigma(k).

Original entry on oeis.org

1, 4, 19, 145, 53, 83, 353, 607, 8171, 75359, 78089, 79259, 11657, 2963, 12047, 378137, 386197, 389917, 397171, 2804377, 11344453, 11457293, 11626553, 11694257, 11825297, 11922017, 12023573, 12096113, 12231521, 12287941, 6207443, 6239683, 3140999, 9479417
Offset: 1

Views

Author

Michel Lagneau, May 25 2012

Keywords

Examples

			1, 4/3, 19/12, 145/84, 53/28, 83/42, 353/168, ...
		

Crossrefs

Cf. A000203, A212718 (denominators), A308039, A345327.

Programs

  • Maple
    with(numtheory): a:=n->numer(sum(1/sigma(k), k=1..n)): seq(a(n), n=1..50);
  • Mathematica
    Numerator[Table[Sum[1/DivisorSigma[1,k],{k,1,n}],{n,1,50}]]
    Accumulate[1/DivisorSigma[1,Range[40]]]//Numerator (* Harvey P. Dale, Aug 13 2023 *)

Formula

a(n)/A212718(n) = c * (log(n) + gamma + Sum_{p prime} (p-1)^2*beta(p)*log(p)/(p*alpha(p))) + O(log(n)^(2/3)*log(log(n))^(4/3)/n), where alpha(p) = 1 - ((p-1)^2/p) * Sum_{k>=1} 1/((p^k-1)*(p^(k+1)-1)), beta(p) = Sum_{k>=1} k/((p^k-1)*(p^(k+1)-1)), and c = Product_{p prime} alpha(p) = A308039 (Sita Ramaiah and Suryanarayana, 1979). - Amiram Eldar, Oct 16 2022

A308041 Decimal expansion of lim_{m->oo} (1/log(m))*Sum_{k=1..m} 1/usigma(k), where usigma(k) is the sum of unitary divisors of k (A034448).

Original entry on oeis.org

7, 6, 8, 7, 1, 8, 3, 6, 2, 4, 4, 6, 4, 8, 5, 1, 9, 8, 6, 7, 2, 7, 3, 4, 3, 3, 2, 4, 5, 5, 3, 5, 0, 5, 2, 5, 2, 3, 4, 2, 5, 5, 7, 4, 0, 4, 1, 1, 9, 0, 4, 1, 1, 0, 7, 0, 1, 5, 4, 1, 3, 5, 2, 9, 3, 4, 8, 6, 0, 7, 7, 6, 8, 3, 3, 7, 9, 0, 8, 0, 3, 9, 3, 3, 2, 8, 8, 0, 7, 6, 4, 8, 9, 6, 9, 1, 4, 7, 5, 9, 5, 3, 3, 7, 2, 4
Offset: 0

Views

Author

Amiram Eldar, May 10 2019

Keywords

Examples

			0.76871836244648519867273433245535052523425574041190...
		

Crossrefs

Cf. A034448, A063974, A308039 (corresponding limit with sigma).

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; m = 1000; f[p_] := 1 - (p - 1)/p*Sum[1/p^k/(p^k + 1), {k, 1, m}]; c = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, m}], x]*Range[0, m]];RealDigits[f[2]*Exp[NSum[Indexed[c, k]*(PrimeZetaP[k] - 1/2^k)/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]

Formula

From Amiram Eldar, Dec 23 2024: (Start)
Equals Product_{p prime} ((1-1/p) * (1 + Sum_{k>=1} 1/(p^k+1))).
Equals lim_{m->oo} (1/m) * Sum_{k=1..m} A063974(k). (End)

Extensions

More digits from Vaclav Kotesovec, Jun 13 2021

A345327 Decimal expansion of a constant Y2 related to the asymptotics of A000203.

Original entry on oeis.org

5, 0, 7, 3, 3, 8, 8, 8, 2, 5, 8, 3, 0, 8, 4, 3, 7, 8, 1, 0, 0, 4, 9, 7, 8, 7, 6, 5, 1, 5, 9, 5, 2, 6, 7, 7, 3, 8, 9, 0, 1, 9, 6, 3, 4, 8, 2, 8, 1, 6, 4, 4, 8, 0, 8, 0, 4, 9, 7, 4, 5, 8, 7, 7, 2, 4, 5, 0, 6, 9, 4, 6, 1, 7, 3, 0, 2, 8, 6, 5, 1, 6, 3, 0, 0, 5, 6, 8, 8, 3, 9, 1, 7, 6, 3, 0, 2, 4, 6, 5, 9, 6, 0, 5, 8, 0
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 14 2021

Keywords

Examples

			0.5073388825830843781004978765159526773890196348281644808049...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; Do[ratfun = (p - 1)^2 * Sum[j/(p^j - 1)/(p^(j + 1) - 1), {j, 1, m}]/(p*(1 - (p - 1)^2/p * Sum[1/(p^j - 1)/(p^(j + 1) - 1), {j, 1, m}])); zetas = 0; ratab = Table[konfun = Together[ratfun + c/(p^power - 1)]; coefs = CoefficientList[Numerator[konfun], p]; sol = Solve[Last[coefs] == 0, c][[1]]; zetas = zetas + c*Zeta'[power]/Zeta[power] /. sol; ratfun = konfun /. sol, {power, 2, 40}]; Print[N[Sum[Log[p]*ratfun /. p -> Prime[k], {k, 1, m}] + zetas, 110]], {m, 10, 250, 10}]

Formula

Equals Sum_{p primes} (p-1)^2 * g(p) * log(p) / (p*f(p)), where f(p) = 1 - (p-1)^2/p * Sum_{j>=1} 1/((p^j - 1)*(p^(j+1) - 1)) and g(p) = Sum_{j>=1} j/((p^j - 1)*(p^(j+1) - 1)).
Sum_{k=1..n} 1/A000203(k) ~ Y1*log(n) + Y1*(gamma + Y2), where gamma = A001620, Y1 = A308039, Y2 = A345327.

A074468 Least number m such that the Sigma-Harmonic sequence Sum_{k=1..m} 1/sigma(k) >= n.

Original entry on oeis.org

1, 7, 29, 129, 571, 2525, 11167, 49372, 218295, 965177, 4267457, 18868240, 83424514, 368855252, 1630865929, 7210751807, 31881800153
Offset: 1

Views

Author

Labos Elemer, Aug 29 2002

Keywords

References

  • Jean-Marie De Koninck, Ces nombres qui nous fascinent, Entry 129, p. 44, Ellipses, Paris, 2008.

Crossrefs

Programs

  • Mathematica
    {s=0, s1=0}; Do[s=s+(1/DivisorSigma[1, n]); If[Greater[Floor[s], s1], s1=Floor[s]; Print[{n, Floor[s]}]], {n, 1, 1000000}]

Formula

Limit_{n->oo} a(n+1)/a(n) = exp(1/c) = 4.42142525588146107878... where c = A308039. - Amiram Eldar, May 05 2024

Extensions

2 more terms from Lekraj Beedassy, Jul 14 2008
a(11)-a(15) from Donovan Johnson, Aug 22 2011
a(16)-a(17) from Amiram Eldar, May 05 2024
Showing 1-6 of 6 results.