cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A308039 Decimal expansion of lim_{i->oo} c(i)/i, where c(i) is the number of integers k such that sigma(k) < i (A074753).

Original entry on oeis.org

6, 7, 2, 7, 3, 8, 3, 0, 9, 2, 1, 7, 4, 0, 9, 7, 9, 5, 3, 2, 7, 6, 8, 7, 2, 0, 3, 0, 8, 8, 9, 8, 6, 8, 6, 8, 9, 7, 0, 8, 7, 6, 8, 2, 9, 4, 1, 0, 2, 3, 2, 7, 3, 1, 2, 3, 5, 7, 1, 4, 5, 1, 8, 8, 2, 1, 9, 0, 9, 0, 2, 4, 3, 3, 3, 8, 3, 3, 8, 5, 7, 2, 2, 9, 1, 3, 6, 5, 4, 7, 1, 6, 0, 5, 8, 5, 2, 5, 4, 6, 7, 5, 9, 4, 4, 4
Offset: 0

Views

Author

Amiram Eldar, May 10 2019

Keywords

Comments

Erdös proved the existence of this constant. Dressler found its explicit form.

Examples

			0.6727383092174097953276872030889868689708768294102327312357145188219...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; m = 1000; f[p_] := (1 - 1/p)*(p - 1)*Sum[1/(p^k - 1), {k, 1, m}]; c = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, m}], x]*Range[0, m]]; RealDigits[f[2]*Exp[NSum[Indexed[c, k]*(PrimeZetaP[k] - 1/2^k)/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]

Formula

Equals Product_{p prime} (1 - 1/p) * Sum_{k>=0} 1/sigma(p^k) = Product_{p prime} ((p - 1)^2/p) * Sum_{k>=1} 1/(p^k - 1) = Product_{p prime} 1 - ((p - 1)^2/p) * Sum_{k>=1} 1/((p^k - 1)*(p^(k+1) - 1)).
Equals lim_{n->oo} (1/log(n))*Sum_{k=1..n} 1/sigma(k).
Equals lim_{n->oo} (1/n) * Sum_{k=1..n} k/sigma(k) (the asymptotic mean of k/sigma(k)). - Amiram Eldar, Dec 23 2020
Sum_{k=1..n} 1/A000203(k) ~ Y1*log(n) + Y1*(gamma + Y2), where gamma = A001620, Y1 = A308039, Y2 = A345327. - Vaclav Kotesovec, Jun 14 2021

Extensions

More digits from Vaclav Kotesovec, Jun 13 2021

A202275 Differences between A074753 (number of integers k such that sigma(k) <= n) and A202276 (number of integers k <= n such that sigma(x) = k has no solution); sigma = A000203.

Original entry on oeis.org

1, 0, 1, 2, 1, 2, 3, 4, 3, 2, 1, 3, 4, 5, 6, 5, 4, 6, 5, 6, 5, 4, 3, 6, 5, 4, 3, 4, 3, 4, 6, 8, 7, 6, 5, 6, 5, 6, 7, 8, 7, 10, 9, 10, 9, 8, 7, 10, 9, 8, 7, 6, 5, 7, 6, 8, 9, 8, 7, 10, 9, 10, 11, 10, 9, 8, 7, 8, 7, 6, 5, 10, 9, 10, 9, 8, 7, 8, 7, 9, 8, 7, 6, 9
Offset: 1

Views

Author

Jaroslav Krizek, Dec 25 2011

Keywords

Comments

Conjectures: Max a(n) = 15 for n = 195, 403, 434. For n >= 687, a(n) < 0.
First term < 0: a(538) = -1.

Crossrefs

Formula

a(n) = A074753(n) - A202276(n).

A202277 Numbers m such that number of integers k such sigma(k) <= m (A074753) is equal to number of integers k <= m such that sigma(x) = k has no solution (A202276).

Original entry on oeis.org

2, 537, 639, 647, 653, 655, 657, 661, 663, 672, 674, 684, 686
Offset: 1

Views

Author

Jaroslav Krizek, Dec 25 2011

Keywords

Comments

Numbers m such that A074753(m) - A202276(m) = 0.
Numbers m such that A202275(m) = 0 (see graph of A202275).
Conjecture: sequence is finite with 13 terms.

Crossrefs

A175091 Numbers k such that A074753(k) == (2,4) (mod 6).

Original entry on oeis.org

4, 7, 13, 15, 21, 22, 23, 24, 40, 49, 50, 51, 52, 53, 54, 57, 64, 65, 66, 67, 68, 73, 74, 79, 80, 94, 95, 96, 99, 100, 101, 102, 111, 112, 122, 123, 124, 127, 134, 135, 136, 137, 138, 145, 146, 147, 148, 149, 150, 159, 160, 172, 173, 174, 177, 178, 179, 180, 181, 182
Offset: 1

Views

Author

Giovanni Teofilatto, Jan 29 2010

Keywords

Crossrefs

Cf. A074753.

Programs

  • Maple
    A074753 := proc(n) option remember ; local a,k ; a := 0 ; for k from 1 to n do if numtheory[sigma](k) < n then a := a+1 ; end if; end do ; a ; end proc: isA175091 := proc(n) return ( (A074753(n) mod 6 )in {2,4}) ; end proc ; for n from 1 to 300 do if isA175091(n) then printf("%d,",n) ; end if; end do ; # R. J. Mathar, Feb 08 2010

Extensions

Corrected by R. J. Mathar, Feb 08 2010

A054973 Number of numbers whose divisors sum to n.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 2, 1, 1, 1, 0, 0, 2, 0, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 1, 2, 2, 0, 0, 0, 1, 0, 1, 1, 1, 0, 3, 0, 1, 0, 0, 0, 3, 0, 0, 0, 0, 0, 2, 0, 2, 1, 0, 0, 3, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 5, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 0, 3, 1, 0, 1, 0, 0, 4, 0
Offset: 1

Views

Author

Henry Bottomley, May 16 2000

Keywords

Comments

a(n) = frequency of values n in A000203(m), where A000203(m) = sum of divisors of m. a(n) >= 1 for such n that A175192(n) = 1, a(n) >= 1 if A000203(m) = n for any m. a(n) = 0 for such n that A175192(n) = 0, a(n) = 0 if A000203(m) = n has no solution. - Jaroslav Krizek, Mar 01 2010
First occurrence of k: 2, 1, 12, 24, 96, 72, ..., = A007368. - Robert G. Wilson v, May 14 2014
a(n) is also the number of positive terms in the n-th row of triangle A299762. - Omar E. Pol, Mar 14 2018
Also the number of integer partitions of n whose parts form the set of divisors of some number (necessarily the greatest part). The Heinz numbers of these partitions are given by A371283. For example, the a(24) = 3 partitions are: (23,1), (15,5,3,1), (14,7,2,1). - Gus Wiseman, Mar 22 2024

Examples

			a(12) = 2 since 11 has factors 1 and 11 with 1 + 11 = 12 and 6 has factors 1, 2, 3 and 6 with 1 + 2 + 3 + 6 = 12.
		

Crossrefs

Cf. A000203 (sum-of-divisors function).
For partial sums see A074753.
The non-strict version is A371284, ranks A371288.
These partitions have ranks A371283, unsorted version A275700.
A000005 counts divisors, row-lengths of A027750.
A000041 counts integer partitions, strict A000009.

Programs

  • Mathematica
    nn = 105; t = Table[0, {nn}]; k = 1; While[k < 6 nn^(3/2)/Pi^2, d = DivisorSigma[1, k]; If[d < nn + 1, t[[d]]++]; k++]; t (* Robert G. Wilson v, May 14 2014 *)
    Table[Length[Select[IntegerPartitions[n],#==Reverse[Divisors[Max@@#]]&]],{n,30}] (* Gus Wiseman, Mar 22 2024 *)
  • PARI
    a(n)=v = vector(0); for (i = 1, n, if (sigma(i) == n, v = concat(v, i));); #v; \\ Michel Marcus, Oct 22 2013
    
  • PARI
    a(n)=sum(k=1,n,sigma(k)==n) \\ Charles R Greathouse IV, Nov 12 2013
    
  • PARI
    first(n)=my(v=vector(n),t); for(k=1,n, t=sigma(n); if(t<=n, v[t]++)); v \\ Charles R Greathouse IV, Mar 08 2017
    
  • PARI
    A054973(n)=#invsigma(n) \\ See Alekseyev link for invsigma(). - M. F. Hasler, Nov 21 2019

Formula

Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A308039. - Amiram Eldar, Dec 23 2024

Extensions

Incorrect comment deleted by M. F. Hasler, Nov 21 2019

A202276 Number of integers k <= n such that sigma(x) = k has no solution, sigma = A000203.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 2, 2, 3, 4, 5, 5, 5, 5, 5, 6, 7, 7, 8, 8, 9, 10, 11, 11, 12, 13, 14, 14, 15, 15, 15, 15, 16, 17, 18, 18, 19, 19, 19, 19, 20, 20, 21, 21, 22, 23, 24, 24, 25, 26, 27, 28, 29, 29, 30, 30, 30, 31, 32, 32, 33, 33, 33, 34, 35, 36, 37, 37, 38, 39
Offset: 1

Views

Author

Jaroslav Krizek, Dec 25 2011

Keywords

Comments

Partial sums of A175253.

Examples

			a(9) = 3 because sigma(x) = k has no solution for k = 2, 5 and 9.
		

Crossrefs

Programs

  • Mathematica
    seq[max_] := Module[{t = Table[0, {max}]}, t[[Complement[Range[max], Table[ DivisorSigma[1, n], {n, 1, max}]]]] = 1; Accumulate@ t]; seq[100] (* Amiram Eldar, Dec 20 2024 *)

A175253 a(n) = characteristic function of numbers k such that A000203(m) = k has no solution for any m, where A000203(m) = sum of divisors of m.

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1
Offset: 1

Views

Author

Jaroslav Krizek, Mar 14 2010

Keywords

Comments

a(n) = characteristic function of numbers from A007369(n). a(n) = 1 if A000203(m) not equal to n for any m, else 0. a(n) = 1 for such n that A054973(n) = 0. a(n) = 0 for such n that A054973(n) >= 1. a(n) + A175192(n) = A000012(n).

Crossrefs

Programs

  • Mathematica
    seq[max_] := Module[{t = Table[0, {max}]}, t[[Complement[Range[max], Table[ DivisorSigma[1, n], {n, 1, max}]]]] = 1; t]; seq[100] (* Amiram Eldar, Mar 22 2024 *)

Extensions

More terms from Jaroslav Krizek, Dec 25 2011.
Showing 1-7 of 7 results.