cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A212718 Denominator of Sum_{k=1..n} 1/sigma(k).

Original entry on oeis.org

1, 3, 12, 84, 28, 42, 168, 280, 3640, 32760, 32760, 32760, 4680, 1170, 4680, 145080, 145080, 145080, 145080, 1015560, 4062240, 4062240, 4062240, 4062240, 4062240, 4062240, 4062240, 4062240, 4062240, 4062240, 2031120, 2031120, 1015560, 3046680, 6093360, 6093360
Offset: 1

Views

Author

Michel Lagneau, May 25 2012

Keywords

Examples

			1, 4/3, 19/12, 145/84, 53/28, 83/42, 353/168, …
		

Crossrefs

Programs

  • Maple
    with(numtheory): a:=n->numer(sum(1/sigma(k), k=1..n)): seq(a(n), n=1..50);
  • Mathematica
    Denominator[Table[Sum[1/DivisorSigma[1,k],{k,1,n}],{n,1,50}]]

A074468 Least number m such that the Sigma-Harmonic sequence Sum_{k=1..m} 1/sigma(k) >= n.

Original entry on oeis.org

1, 7, 29, 129, 571, 2525, 11167, 49372, 218295, 965177, 4267457, 18868240, 83424514, 368855252, 1630865929, 7210751807, 31881800153
Offset: 1

Views

Author

Labos Elemer, Aug 29 2002

Keywords

References

  • Jean-Marie De Koninck, Ces nombres qui nous fascinent, Entry 129, p. 44, Ellipses, Paris, 2008.

Crossrefs

Programs

  • Mathematica
    {s=0, s1=0}; Do[s=s+(1/DivisorSigma[1, n]); If[Greater[Floor[s], s1], s1=Floor[s]; Print[{n, Floor[s]}]], {n, 1, 1000000}]

Formula

Limit_{n->oo} a(n+1)/a(n) = exp(1/c) = 4.42142525588146107878... where c = A308039. - Amiram Eldar, May 05 2024

Extensions

2 more terms from Lekraj Beedassy, Jul 14 2008
a(11)-a(15) from Donovan Johnson, Aug 22 2011
a(16)-a(17) from Amiram Eldar, May 05 2024

A357845 Numerators of the partial alternating sums of the reciprocals of the sum of divisors function (A000203).

Original entry on oeis.org

1, 2, 11, 65, 79, 6, 55, 769, 10837, 30691, 33421, 32251, 34591, 16613, 34591, 1039561, 365327, 356647, 373573, 365513, 1504367, 4400261, 4569521, 4501817, 149447, 146327, 149603, 147263, 151631, 49937, 25651, 75913, 38639, 114097, 232289, 230129, 4470731, 4408487
Offset: 1

Views

Author

Amiram Eldar, Oct 16 2022

Keywords

Examples

			Fractions begin with 1, 2/3, 11/12, 65/84, 79/84, 6/7, 55/56, 769/840, 10837/10920, 30691/32760, 33421/32760, 32251/32760, ...
		

Crossrefs

Cf. A000203, A065442, A065443, A068762, A357846 (denominators).
Similar sequence: A104528, A212717, A357820.

Programs

  • Mathematica
    Numerator[Accumulate[Array[(-1)^(# + 1)/DivisorSigma[1, #] &, 60]]]
  • PARI
    lista(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / sigma(k); print1(numerator(s), ", "))};
    
  • Python
    from fractions import Fraction
    from sympy import divisor_sigma
    def A357845(n): return sum(Fraction(1 if k&1 else -1, divisor_sigma(k)) for k in range(1,n+1)).numerator # Chai Wah Wu, Oct 16 2022

Formula

a(n) = numerator(Sum_{k=1..n} (-1)^(k+1)/sigma(k)), where sigma(k) = A000203(k).
a(n)/A357846(n) ~ E * ((2/K-1)*(log(n) + gamma + F) + 2*log(2)*K'/K^2) + O(log(n)^(5/3)*log(log(n))^(4/3)/n), where E = Product_{p prime} alpha(p), F = Sum_{p prime} (p-1)^2*beta(p)*log(p)/(p*alpha(p)), alpha(p) = 1 - ((p-1)^2/p) * Sum_{k>=1} 1/((p^k-1)*(p^(k+1)-1)), beta(p) = Sum_{k>=1} k/((p^k-1)*(p^(k+1)-1)), K = A065442, K' = A065443 (Tóth, 2017).

A067577 a(n) = Product_{i=1..n} sigma(i) * Sum_{i=1..n} 1/sigma(i).

Original entry on oeis.org

1, 4, 19, 145, 954, 11952, 101664, 1573344, 21179232, 390661056, 4857760512, 138055228416, 1989835352064, 48554918608896, 1184490930438144, 37179368055373824, 683493250562260992, 26913000032107757568, 548273767789158727680, 23227773590084738088960, 751700319286194622955520
Offset: 1

Views

Author

Benoit Cloitre, Jan 30 2002

Keywords

Crossrefs

Cf. A000203 (sigma), A066780, A212717, A212718.

Programs

  • Mathematica
    Array[Product[DivisorSigma[1, i], {i, #}]*Sum[1/DivisorSigma[1, j], {j, #}] &, 21] (* Michael De Vlieger, Jul 16 2022 *)
  • PARI
    a(n) = prod(i=1, n, sigma(i)) * sum(i=1, n, 1/sigma(i)); \\ Michel Marcus, Jan 09 2021

Extensions

More terms from Michel Marcus, Jan 09 2021

A357818 Numerators of the partial sums of the reciprocals of the Dedekind psi function (A001615).

Original entry on oeis.org

1, 4, 19, 7, 23, 2, 17, 53, 55, 169, 175, 89, 641, 1303, 331, 1345, 1373, 1387, 7061, 2377, 9613, 29119, 29539, 29749, 6017, 6065, 6121, 6163, 31151, 31291, 15803, 3977, 16013, 48319, 24317, 12211, 233899, 58774, 472757, 59344, 119543, 1918673, 21249043, 21336823
Offset: 1

Views

Author

Amiram Eldar, Oct 14 2022

Keywords

Examples

			Fractions begin with 1, 4/3, 19/12, 7/4, 23/12, 2, 17/8, 53/24, 55/24, 169/72, 175/72, 89/36, ...
		

Crossrefs

Cf. A001615, A173290, A357819 (denominators).
Similar sequences: A028415, A104528, A212717.

Programs

  • Mathematica
    psi[n_] := n * Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]); psi[1] = 1; Numerator[Accumulate[1/Array[psi[#] &, 50]]]
  • PARI
    f(n) = n * sumdivmult(n, d, issquarefree(d)/d); \\ A001615
    a(n) = numerator(sum(k=1, n, 1/f(k))); \\ Michel Marcus, Oct 15 2022

Formula

a(n) = numerator(Sum_{k=1..n} 1/psi(k)).
a(n)/A357819(n) ~ C * (log(n) + gamma + D) + O(log(n)^(2/3) * log(log(n))^(4/3) / n), where C = Product_{p prime} (1 - 1/(p*(p+1))) (A065463), and D = Sum_{p prime} log(p)/(p^2+p-1) (A335707) (Sita Ramaiah and Suryanarayana, 1979; Tóth, 2017).
Showing 1-5 of 5 results.