cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A212717 Numerator of Sum_{k=1..n} 1/sigma(k).

Original entry on oeis.org

1, 4, 19, 145, 53, 83, 353, 607, 8171, 75359, 78089, 79259, 11657, 2963, 12047, 378137, 386197, 389917, 397171, 2804377, 11344453, 11457293, 11626553, 11694257, 11825297, 11922017, 12023573, 12096113, 12231521, 12287941, 6207443, 6239683, 3140999, 9479417
Offset: 1

Views

Author

Michel Lagneau, May 25 2012

Keywords

Examples

			1, 4/3, 19/12, 145/84, 53/28, 83/42, 353/168, ...
		

Crossrefs

Cf. A000203, A212718 (denominators), A308039, A345327.

Programs

  • Maple
    with(numtheory): a:=n->numer(sum(1/sigma(k), k=1..n)): seq(a(n), n=1..50);
  • Mathematica
    Numerator[Table[Sum[1/DivisorSigma[1,k],{k,1,n}],{n,1,50}]]
    Accumulate[1/DivisorSigma[1,Range[40]]]//Numerator (* Harvey P. Dale, Aug 13 2023 *)

Formula

a(n)/A212718(n) = c * (log(n) + gamma + Sum_{p prime} (p-1)^2*beta(p)*log(p)/(p*alpha(p))) + O(log(n)^(2/3)*log(log(n))^(4/3)/n), where alpha(p) = 1 - ((p-1)^2/p) * Sum_{k>=1} 1/((p^k-1)*(p^(k+1)-1)), beta(p) = Sum_{k>=1} k/((p^k-1)*(p^(k+1)-1)), and c = Product_{p prime} alpha(p) = A308039 (Sita Ramaiah and Suryanarayana, 1979). - Amiram Eldar, Oct 16 2022

A357846 Denominators of the partial alternating sums of the reciprocals of the sum of divisors function (A000203).

Original entry on oeis.org

1, 3, 12, 84, 84, 7, 56, 840, 10920, 32760, 32760, 32760, 32760, 16380, 32760, 1015560, 338520, 338520, 338520, 338520, 1354080, 4062240, 4062240, 4062240, 131040, 131040, 131040, 131040, 131040, 43680, 21840, 65520, 32760, 98280, 196560, 196560, 3734640, 3734640
Offset: 1

Views

Author

Amiram Eldar, Oct 16 2022

Keywords

Comments

See A357845 for more details.

Crossrefs

Cf. A000203, A068762, A357845 (numerators).
Similar sequence: A104529, A212718, A357821.

Programs

  • Mathematica
    Denominator[Accumulate[Array[(-1)^(# + 1)/DivisorSigma[1, #] &, 60]]]
  • PARI
    lista(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / sigma(k); print1(denominator(s), ", "))};
    
  • Python
    from fractions import Fraction
    from sympy import divisor_sigma
    def A357846(n): return sum(Fraction(1 if k&1 else -1, divisor_sigma(k)) for k in range(1,n+1)).denominator # Chai Wah Wu, Oct 16 2022

Formula

a(n) = denominator(Sum_{k=1..n} (-1)^(k+1)/sigma(k)), where sigma(k) = A000203(k).

A067577 a(n) = Product_{i=1..n} sigma(i) * Sum_{i=1..n} 1/sigma(i).

Original entry on oeis.org

1, 4, 19, 145, 954, 11952, 101664, 1573344, 21179232, 390661056, 4857760512, 138055228416, 1989835352064, 48554918608896, 1184490930438144, 37179368055373824, 683493250562260992, 26913000032107757568, 548273767789158727680, 23227773590084738088960, 751700319286194622955520
Offset: 1

Views

Author

Benoit Cloitre, Jan 30 2002

Keywords

Crossrefs

Cf. A000203 (sigma), A066780, A212717, A212718.

Programs

  • Mathematica
    Array[Product[DivisorSigma[1, i], {i, #}]*Sum[1/DivisorSigma[1, j], {j, #}] &, 21] (* Michael De Vlieger, Jul 16 2022 *)
  • PARI
    a(n) = prod(i=1, n, sigma(i)) * sum(i=1, n, 1/sigma(i)); \\ Michel Marcus, Jan 09 2021

Extensions

More terms from Michel Marcus, Jan 09 2021

A357819 Denominators of the partial sums of the reciprocals of the Dedekind psi function (A001615).

Original entry on oeis.org

1, 3, 12, 4, 12, 1, 8, 24, 24, 72, 72, 36, 252, 504, 126, 504, 504, 504, 2520, 840, 3360, 10080, 10080, 10080, 2016, 2016, 2016, 2016, 10080, 10080, 5040, 1260, 5040, 15120, 7560, 3780, 71820, 17955, 143640, 17955, 35910, 574560, 6320160, 6320160, 6320160, 6320160
Offset: 1

Views

Author

Amiram Eldar, Oct 14 2022

Keywords

Comments

See A357818 for more details.

Crossrefs

Cf. A001615, A173290, A357818 (numerators).
Similar sequences: A048049, A104529, A212718.

Programs

  • Mathematica
    psi[n_] := n * Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]); psi[1] = 1; Denominator[Accumulate[1/Array[psi[#] &, 50]]]
  • PARI
    f(n) = n * sumdivmult(n, d, issquarefree(d)/d); \\ A001615
    a(n) = denominator(sum(k=1, n, 1/f(k))); \\ Michel Marcus, Oct 15 2022

Formula

a(n) = denominator(Sum_{k=1..n} 1/psi(k)).
Showing 1-4 of 4 results.