cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308063 Number of ordered factorizations of n into numbers with an odd number of distinct prime divisors.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 4, 2, 2, 1, 5, 1, 2, 2, 8, 1, 5, 1, 5, 2, 2, 1, 12, 2, 2, 4, 5, 1, 7, 1, 16, 2, 2, 2, 14, 1, 2, 2, 12, 1, 7, 1, 5, 5, 2, 1, 28, 2, 5, 2, 5, 1, 12, 2, 12, 2, 2, 1, 21, 1, 2, 5, 32, 2, 7, 1, 5, 2, 7, 1, 37, 1, 2, 5, 5, 2, 7, 1, 28, 8, 2, 1, 21, 2, 2, 2, 12, 1, 21
Offset: 1

Views

Author

Ilya Gutkovskiy, May 10 2019

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 90; A[] = 0; Do[A[x] = x + Sum[Boole[OddQ[PrimeNu[k]]] A[x^k], {k, 1, terms}] + O[x]^(terms + 1) // Normal, terms + 1]; Rest[CoefficientList[A[x], x]]
    f[n_] := f[n] = Boole[OddQ[PrimeNu[n]]]; a[n_] := If[n == 1, n, Sum[If[d < n, f[n/d] a[d], 0], {d, Divisors[n]}]]; Table[a[n], {n, 1, 90}]
  • PARI
    a(n) = if(n == 1, 1, sumdiv(n, d, if(dAmiram Eldar, Jul 03 2025

Formula

G.f. A(x) satisfies: A(x) = x + Sum_{k>=1} A(x^A030230(k)).
a(1) = 1; a(n) = Sum_{d|n, dA092248(n/d)*a(d).
a(n) = 1 if n is in A008578.