cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308066 Number of triangles with perimeter n whose side lengths are even.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 2, 0, 1, 0, 3, 0, 2, 0, 4, 0, 3, 0, 5, 0, 4, 0, 7, 0, 5, 0, 8, 0, 7, 0, 10, 0, 8, 0, 12, 0, 10, 0, 14, 0, 12, 0, 16, 0, 14, 0, 19, 0, 16, 0, 21, 0, 19, 0, 24, 0, 21, 0, 27, 0, 24, 0, 30, 0, 27, 0, 33, 0, 30, 0, 37, 0
Offset: 1

Views

Author

Wesley Ivan Hurt, May 10 2019

Keywords

Crossrefs

Cf. A308065.

Programs

  • Mathematica
    Table[Sum[Sum[Mod[i - 1, 2] Mod[k - 1, 2] Mod[n - i - k - 1, 2]*Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}]

Formula

a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} sign(floor((i+k)/(n-i-k+1))) * ((i-1) mod 2) * ((k-1) mod 2) * ((n-i-k-1) mod 2).
Conjectures from Colin Barker, May 11 2019: (Start)
G.f.: x^6 / ((1 - x)^3*(1 + x)^3*(1 - x + x^2)*(1 + x^2)^2*(1 + x + x^2)*(1 + x^4)).
a(n) = a(n-4) + a(n-6) + a(n-8) - a(n-10) - a(n-12) - a(n-14) + a(n-18) for n>18.
(End)