A308066 Number of triangles with perimeter n whose side lengths are even.
0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 2, 0, 1, 0, 3, 0, 2, 0, 4, 0, 3, 0, 5, 0, 4, 0, 7, 0, 5, 0, 8, 0, 7, 0, 10, 0, 8, 0, 12, 0, 10, 0, 14, 0, 12, 0, 16, 0, 14, 0, 19, 0, 16, 0, 21, 0, 19, 0, 24, 0, 21, 0, 27, 0, 24, 0, 30, 0, 27, 0, 33, 0, 30, 0, 37, 0
Offset: 1
Keywords
Links
- Wikipedia, Integer Triangle
Crossrefs
Cf. A308065.
Programs
-
Mathematica
Table[Sum[Sum[Mod[i - 1, 2] Mod[k - 1, 2] Mod[n - i - k - 1, 2]*Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}]
Formula
a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} sign(floor((i+k)/(n-i-k+1))) * ((i-1) mod 2) * ((k-1) mod 2) * ((n-i-k-1) mod 2).
Conjectures from Colin Barker, May 11 2019: (Start)
G.f.: x^6 / ((1 - x)^3*(1 + x)^3*(1 - x + x^2)*(1 + x^2)^2*(1 + x + x^2)*(1 + x^4)).
a(n) = a(n-4) + a(n-6) + a(n-8) - a(n-10) - a(n-12) - a(n-14) + a(n-18) for n>18.
(End)