cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A308097 Take the integer-sided triangles with perimeter n and integer area. Then a(n) is the sum of the areas of all the triangles and the squares on their sides.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 56, 0, 0, 0, 98, 0, 126, 0, 0, 0, 0, 0, 224, 0, 0, 0, 0, 0, 368, 0, 826, 0, 0, 0, 2012, 0, 0, 0, 638, 0, 1390, 0, 756, 0, 0, 0, 2692, 0, 1928, 0, 0, 0, 4764, 0, 1334, 0, 0, 0, 4434, 0, 0, 0, 8354, 0, 1778, 0, 1794, 0, 3800, 0
Offset: 1

Views

Author

Wesley Ivan Hurt, May 12 2019

Keywords

Crossrefs

Cf. A308091.

Programs

  • Mathematica
    Table[Sum[Sum[(i^2 + k^2 + (n - i - k)^2 + Sqrt[(n/2) (n/2 - i) (n/2 - k) (i + k - n/2)]) (1 - Ceiling[Sqrt[(n/2) (n/2 - i) (n/2 - k) (i + k - n/2)]] + Floor[Sqrt[(n/2) (n/2 - i) (n/2 - k) (i + k - n/2)]])*Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}]

Formula

a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} (i^2 + k^2 + (n-i-k)^2) * m * (1 - ceiling(m) + floor(m)) * sign(floor((i+k)/(n-i-k+1))), where m = sqrt((n/2)*(n/2-i)*(n/2-k)*(i+k-n/2)).
Showing 1-1 of 1 results.