cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308092 The sum of the first n terms of the sequence is the concatenation of the first n bits of the sequence read as binary, with a(1) = 1.

Original entry on oeis.org

1, 2, 3, 7, 14, 28, 56, 112, 224, 448, 896, 1791, 3583, 7166, 14332, 28663, 57326, 114653, 229306, 458612, 917223, 1834446, 3668892, 7337785, 14675570, 29351140, 58702279, 117404558, 234809116, 469618232, 939236465, 1878472930, 3756945860, 7513891719
Offset: 1

Views

Author

Peter Kagey, May 12 2019

Keywords

Comments

In binary, the sequence begins 1, 10, 11, 111, 1110, 11100, 111000, 1110000, 11100000, 111000000, 1110000000, 11011111111, 110111111111, 1101111111110, 11011111111100, ...
Conjecture: The number of 1's in the binary representation of each term is weakly increasing, i.e., A000120(a(n)) >= A000120(a(n-1)).
Proved by Matthew Scroggs; see link. - Peter Kagey, Jun 19 2019

Examples

			For n=5, 1 + 2 + 3 + 7 + 14 = 1_2 + 10_2 + 11_2 + 111_2 + 1110_2 = 11011_2, the first five bits of the sequence.
		

Crossrefs

Cf. A000120, A300000 (decimal analog).

Programs

  • Mathematica
    a[1]=1;a[2]=2;a[n_]:=a[n]=FromDigits[Flatten[IntegerDigits[#,2]&/@Table[a[k],{k,n-1}]][[;;n]],2]-Total@Table[a[m],{m,n-1}]
    Table[a[l],{l,40}] (* Giorgos Kalogeropoulos, Mar 30 2021 *)
  • Python
    def aupton(terms):
      alst, bstr = [1, 2], "110"
      for n in range(3, terms+1):
        an = int(bstr[:n], 2) - int(bstr[:n-1], 2)
        alst, bstr = alst + [an], bstr + bin(an)[2:]
      return alst
    print(aupton(34)) # Michael S. Branicky, Mar 30 2021
  • Ruby
    def first_bits(n, seq); seq.map { |i| i.to_s(2) }.join[0...n].to_i(2) end
    def next_term(n, seq); first_bits(n,seq) - first_bits(n-1,seq) end
    def a308092_list(n)
      (3..n).reduce([1,2]) { |accum, i| accum << next_term(i, accum) }
    end
    

Formula

a(n) = c(n) - c(n-1) for n > 2, where c(n) is the concatenation of the first n bits of the sequence.