A308092 The sum of the first n terms of the sequence is the concatenation of the first n bits of the sequence read as binary, with a(1) = 1.
1, 2, 3, 7, 14, 28, 56, 112, 224, 448, 896, 1791, 3583, 7166, 14332, 28663, 57326, 114653, 229306, 458612, 917223, 1834446, 3668892, 7337785, 14675570, 29351140, 58702279, 117404558, 234809116, 469618232, 939236465, 1878472930, 3756945860, 7513891719
Offset: 1
Examples
For n=5, 1 + 2 + 3 + 7 + 14 = 1_2 + 10_2 + 11_2 + 111_2 + 1110_2 = 11011_2, the first five bits of the sequence.
Links
- Peter Kagey, Table of n, a(n) for n = 1..1000
- Matthew Scroggs, Number of 1s in A308092
Programs
-
Mathematica
a[1]=1;a[2]=2;a[n_]:=a[n]=FromDigits[Flatten[IntegerDigits[#,2]&/@Table[a[k],{k,n-1}]][[;;n]],2]-Total@Table[a[m],{m,n-1}] Table[a[l],{l,40}] (* Giorgos Kalogeropoulos, Mar 30 2021 *)
-
Python
def aupton(terms): alst, bstr = [1, 2], "110" for n in range(3, terms+1): an = int(bstr[:n], 2) - int(bstr[:n-1], 2) alst, bstr = alst + [an], bstr + bin(an)[2:] return alst print(aupton(34)) # Michael S. Branicky, Mar 30 2021
-
Ruby
def first_bits(n, seq); seq.map { |i| i.to_s(2) }.join[0...n].to_i(2) end def next_term(n, seq); first_bits(n,seq) - first_bits(n-1,seq) end def a308092_list(n) (3..n).reduce([1,2]) { |accum, i| accum << next_term(i, accum) } end
Formula
a(n) = c(n) - c(n-1) for n > 2, where c(n) is the concatenation of the first n bits of the sequence.
Comments