A324608 Number of 1's in binary expansion of A308092(n).
1, 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 10, 11, 11, 11, 13, 13, 14, 14, 14, 16, 16, 16, 17, 17, 17, 19, 19, 19, 19, 20, 20, 20, 22, 22, 22, 22, 22, 23, 23, 23, 25, 25, 25, 25, 25, 25, 26, 26, 26, 28, 28, 28, 28, 28, 28, 28, 29, 29, 30, 31, 31, 31, 31, 31, 31, 31, 31
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..3000
Programs
-
Maple
S:= "110": b("0"):= 0: b("1"):= 1: A308092[1]:= 1: A308092[2]:= 2: t:= 3: for n from 3 to 300 do tp:= add(b(S[i])*2^(n-i),i=1..n); A308092[n]:= tp - t; t:= tp; S:= cat(S,convert(A308092[n],binary)); od: seq(convert(convert(A308092[n],base,2),`+`), n=1..300); # Robert Israel, Jun 12 2019
-
Mathematica
a[1]=1;a[2]=2;a[n_]:=a[n]=FromDigits[Flatten[IntegerDigits[#,2]&/@Table[a[k],{k,n-1}]][[;;n]],2]-Total@Table[a[m],{m,n-1}] Count[#,1]&/@Table[IntegerDigits[a[l],2],{l,70}] (* Giorgos Kalogeropoulos, Mar 30 2021 *)
-
Python
def aupton(terms): alst, bstr = [1, 1], "110" for n in range(3, terms+1): an = int(bstr[:n], 2) - int(bstr[:n-1], 2) binan = bin(an)[2:] alst, bstr = alst + [binan.count('1')], bstr + binan return alst print(aupton(68)) # Michael S. Branicky, Mar 30 2021
Comments