A308117 Number of acute integer-sided triangles with perimeter n and squarefree sides.
0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 2, 1, 3, 2, 3, 2, 2, 1, 2, 1, 2, 1, 2, 2, 4, 3, 3, 2, 5, 3, 6, 4, 6, 5, 5, 3, 6, 5, 7, 4, 6, 5, 7, 4, 8, 5, 7, 4, 8, 5, 9, 7, 10, 7, 10, 6, 9, 5, 7, 6, 10, 7, 8, 6, 7, 7, 9, 7, 12, 9, 13, 11, 14, 10, 14, 11, 15, 13, 18, 15
Offset: 1
Keywords
Links
- Wikipedia, Integer Triangle
Programs
-
Mathematica
Table[Sum[Sum[MoebiusMu[i]^2*MoebiusMu[k]^2*MoebiusMu[n - k - i]^2 (1 - Sign[Floor[(n - i - k)^2/(i^2 + k^2)]]) Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}]
Formula
a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} (1-sign(floor((n-i-k)^2/(i^2+k^2)))) * sign(floor((i+k)/(n-i-k+1))) mu(i)^2 * mu(k)^2 * mu(n-i-k)^2, where mu is the Möbius function (A008683).