A308119 Sum of the smallest side lengths of all integer-sided triangles with prime side lengths and perimeter n.
0, 0, 0, 0, 0, 2, 2, 2, 3, 0, 3, 2, 3, 0, 8, 2, 8, 0, 5, 0, 7, 0, 5, 2, 10, 0, 15, 2, 15, 0, 12, 0, 18, 0, 23, 2, 21, 0, 39, 2, 37, 0, 36, 0, 31, 0, 47, 2, 47, 0, 46, 0, 48, 0, 30, 0, 47, 0, 61, 2, 35, 0, 66, 2, 92, 0, 61, 0, 77, 0, 60, 0, 43, 0, 79, 2, 90
Offset: 1
Keywords
Links
- Wikipedia, Integer Triangle
Programs
-
Mathematica
Table[Sum[Sum[k (PrimePi[i] - PrimePi[i - 1]) (PrimePi[k] - PrimePi[k - 1]) (PrimePi[n - i - k] - PrimePi[n - i - k - 1]) Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}]
Formula
a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} sign(floor((i+k)/(n-i-k+1))) * c(i) * c(k) * c(n-i-k) * k, where c is the prime characteristic (A010051).