A308143 Take all the integer-sided triangles with perimeter n and squarefree sides a, b, and c such that a <= b <= c. a(n) is the sum of all the b's.
0, 0, 1, 0, 2, 2, 5, 3, 3, 0, 8, 5, 16, 11, 29, 18, 18, 12, 13, 7, 23, 23, 51, 35, 28, 20, 62, 44, 82, 79, 132, 98, 100, 75, 144, 108, 121, 80, 185, 131, 148, 87, 203, 145, 265, 200, 345, 264, 300, 214, 272, 187, 305, 274, 301, 216, 246, 210, 340, 258, 406
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..1000
- Wikipedia, Integer Triangle
Programs
-
Maple
f:= proc(n) local a,b,t; t:= 0; for a from 1 to n/3 do if not a::squarefree then next fi; for b from max(a, ceil((n+1)/2-a)) to (n-a)/2 do if b::squarefree and (n-a-b)::squarefree then t:= t+b fi od od; t end proc: map(f, [$1..100]); # Robert Israel, May 09 2024
-
Mathematica
Table[Sum[Sum[i* MoebiusMu[i]^2*MoebiusMu[k]^2*MoebiusMu[n - k - i]^2 *Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}]
Formula
a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} sign(floor((i+k)/(n-i-k+1))) * mu(i)^2 * mu(k)^2 * mu(n-i-k)^2 * i, where mu is the Möbius function (A008683).