cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308143 Take all the integer-sided triangles with perimeter n and squarefree sides a, b, and c such that a <= b <= c. a(n) is the sum of all the b's.

Original entry on oeis.org

0, 0, 1, 0, 2, 2, 5, 3, 3, 0, 8, 5, 16, 11, 29, 18, 18, 12, 13, 7, 23, 23, 51, 35, 28, 20, 62, 44, 82, 79, 132, 98, 100, 75, 144, 108, 121, 80, 185, 131, 148, 87, 203, 145, 265, 200, 345, 264, 300, 214, 272, 187, 305, 274, 301, 216, 246, 210, 340, 258, 406
Offset: 1

Views

Author

Wesley Ivan Hurt, May 14 2019

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n)
      local a,b,t;
      t:= 0;
      for a from 1 to n/3 do
        if not a::squarefree then next fi;
        for b from max(a, ceil((n+1)/2-a)) to (n-a)/2 do
          if b::squarefree and (n-a-b)::squarefree then t:= t+b fi
      od od;
      t
    end proc:
    map(f, [$1..100]); # Robert Israel, May 09 2024
  • Mathematica
    Table[Sum[Sum[i* MoebiusMu[i]^2*MoebiusMu[k]^2*MoebiusMu[n - k - i]^2 *Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}]

Formula

a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} sign(floor((i+k)/(n-i-k+1))) * mu(i)^2 * mu(k)^2 * mu(n-i-k)^2 * i, where mu is the Möbius function (A008683).