A308147 Sum of the perimeters of all integer-sided isosceles triangles with perimeter n and prime side lengths.
0, 0, 0, 0, 0, 6, 7, 8, 9, 0, 11, 12, 13, 0, 15, 16, 34, 0, 19, 0, 21, 0, 0, 24, 50, 0, 54, 28, 58, 0, 31, 0, 66, 0, 35, 36, 74, 0, 117, 40, 123, 0, 86, 0, 135, 0, 47, 48, 147, 0, 153, 0, 106, 0, 55, 0, 171, 0, 59, 60, 122, 0, 189, 64, 260, 0, 134, 0, 276, 0
Offset: 1
Keywords
Links
- Wikipedia, Integer Triangle
Programs
-
Mathematica
Table[n*Sum[Sum[(PrimePi[i] - PrimePi[i - 1]) (PrimePi[k] - PrimePi[k - 1]) (PrimePi[n - i - k] - PrimePi[n - i - k - 1]) (KroneckerDelta[i, k] + KroneckerDelta[i, n - i - k] - KroneckerDelta[k, n - i - k]) Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}]
Formula
a(n) = n * Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} sign(floor((i+k)/(n-i-k+1))) * ([i = k] + [i = n-i-k] - [k = n-i-k]) * c(i) * c(k) * c(n-i-k), where c is the prime characteristic (A010051) and [] is the Iverson bracket.