A308249 Squares of automorphic numbers in base 12 (cf. A201918).
0, 1, 16, 81, 4096, 6561, 263169, 1478656, 40960000, 205549569, 54988374016, 233605955584, 6263292059649, 303894740860929, 338531738189824, 170196776412774400, 709858175909625856, 18638643564726714369, 124592287100855910400, 2576097707358918017025, 479214351668445504864256
Offset: 1
Examples
4096 = 2454_12 and sqrt(2454_12) = 54_12. Hence 4096 is in the sequence.
Links
- V. deGuerre and R. A. Fairbairn, Automorphic numbers, J. Rec. Math., 1 (No. 3, 1968), 173-179.
Programs
-
Python
dig = "0123456789AB" def To12(n): s = "" while n > 0: s, n = dig[n%12]+s, n//12 return s n, m = 1, 0 print(n,m*m) while n < 100: m = m+1 m2, m1 = To12(m*m), To12(m) i, i2, i1 = 0, len(m2), len(m1) while i < i1 and (m2[i2-i-1] == m1[i1-i-1]): i = i+1 if i == i1: print(n,m*m) n = n+1 # A.H.M. Smeets, Aug 09 2019
-
Sage
[(n * n) for n in (0..1000000) if (n * n).str(base = 12).endswith(n.str(base = 12))]
Formula
Equals A201918(n)^2.
Extensions
Terms a(16)..a(21) from A.H.M. Smeets, Aug 09 2019
Comments