cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308292 A(n,k) = Sum_{i_1=0..n} Sum_{i_2=0..n} ... Sum_{i_k=0..n} multinomial(i_1 + i_2 + ... + i_k; i_1, i_2, ..., i_k), square array A(n,k) read by antidiagonals, for n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 16, 19, 4, 1, 1, 65, 271, 69, 5, 1, 1, 326, 7365, 5248, 251, 6, 1, 1, 1957, 326011, 1107697, 110251, 923, 7, 1, 1, 13700, 21295783, 492911196, 191448941, 2435200, 3431, 8, 1, 1, 109601, 1924223799, 396643610629, 904434761801, 35899051101, 55621567, 12869, 9, 1
Offset: 0

Views

Author

Seiichi Manyama, May 19 2019

Keywords

Comments

For r > 1, row r is asymptotic to sqrt(2*Pi) * (r*n)^(r*n + 1/2) / ((r!)^n * exp(r*n-1)). - Vaclav Kotesovec, May 24 2020

Examples

			For (n,k) = (3,2), (Sum_{i=0..3} x^i/i!)^2 = (1 + x + x^2/2 + x^3/6)^2 = 1 + 2*x + 4*x^2/2 + 8*x^3/6 + 14*x^4/24 + 20*x^5/120 + 20*x^6/720. So A(3,2) = 1 + 2 + 4 + 8 + 14 + 20 + 20 = 69.
Square array begins:
   1, 1,    1,        1,             1,                   1, ...
   1, 2,    5,       16,            65,                 326, ...
   1, 3,   19,      271,          7365,              326011, ...
   1, 4,   69,     5248,       1107697,           492911196, ...
   1, 5,  251,   110251,     191448941,        904434761801, ...
   1, 6,  923,  2435200,   35899051101,    1856296498826906, ...
   1, 7, 3431, 55621567, 7101534312685, 4098746255797339511, ...
		

Crossrefs

Columns k=0..4 give A000012, A000027(n+1), A030662(n+1), A144660, A144661.
Rows n=0..4 give A000012, A000522, A003011, A308294, A308295.
Main diagonal gives A274762.
Cf. A144510.

Formula

A(n,k) = Sum_{i=0..k*n} b(i) where Sum_{i=0..k*n} b(i) * x^i/i! = (Sum_{i=0..n} x^i/i!)^k.