A308314 Decimal expansion of Sum_{k>=1} (1/A055642(k)^A055642(k)) where A055642(k) is the number of digits of the integer k.
1, 6, 8, 0, 5, 2, 4, 5, 3, 7, 5, 2, 6, 2, 1, 6, 8, 9, 4, 9, 0, 8, 5, 6, 7, 3, 3, 2, 0, 5, 5, 6, 7, 2, 4, 5, 2, 1, 9, 6, 5, 2, 6, 7, 9, 9, 7, 1, 9, 8, 4, 9, 5, 0, 4, 9, 1, 5, 5, 7, 0, 3, 5, 9, 8, 1, 4, 3, 7, 9, 8, 3, 4, 8, 1, 7, 5, 7, 0, 8, 8, 9, 4, 8, 3, 4, 6, 1, 6, 4, 4, 4, 5, 0, 7, 8, 4, 8, 6, 4
Offset: 3
Examples
168.05245375262168949085673320556724...
References
- Xavier Merlin, Methodix Analyse, Ellipses, 1997, Exercice 22 p. 120.
- J.-M. Monier, Analyse, Tome 3, 2ème année, MP.PSI.PC.PT, Dunod, 1997, Exercice 3.2.1.h" p. 248.
Programs
-
Maple
evalf((9/10) * Sum((10/n)^n, n=1..infinity), 100);
-
PARI
(9/10) * suminf(k=1, (10/k)^k) \\ Michel Marcus, Jun 08 2019
Formula
Equals (9/10) * Sum_{k>=1} (10/k)^k.
Equals Sum_{n>=1} (1/A138908(n)).
Comments