cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308314 Decimal expansion of Sum_{k>=1} (1/A055642(k)^A055642(k)) where A055642(k) is the number of digits of the integer k.

Original entry on oeis.org

1, 6, 8, 0, 5, 2, 4, 5, 3, 7, 5, 2, 6, 2, 1, 6, 8, 9, 4, 9, 0, 8, 5, 6, 7, 3, 3, 2, 0, 5, 5, 6, 7, 2, 4, 5, 2, 1, 9, 6, 5, 2, 6, 7, 9, 9, 7, 1, 9, 8, 4, 9, 5, 0, 4, 9, 1, 5, 5, 7, 0, 3, 5, 9, 8, 1, 4, 3, 7, 9, 8, 3, 4, 8, 1, 7, 5, 7, 0, 8, 8, 9, 4, 8, 3, 4, 6, 1, 6, 4, 4, 4, 5, 0, 7, 8, 4, 8, 6, 4
Offset: 3

Views

Author

Bernard Schott, May 19 2019

Keywords

Comments

With summation by parts to obtain 1st formula:
Sum_{k>=1} (1/length(k)^length(k)) =
Sum_{m=1..9} (1/1^1) + Sum_{m=10..99} (1/2^2) + Sum_{m=100...999} (1/3^3) + Sum_{m=1000...9999} (1/4^4) + ... =
9*(1/1^1) + 90*(1/2^2) + 900*(1/3^3) + 9000*(1/4^4) + 90000*(1/5^5) + ... =
9 ( 1/1^1 + 10^1/2^2 + 10^2/3^3 + 10^3/4^4 + 10^4/5^5 + ... =
(9/10) * (10^1/1^1 + 10^2/2^2 + 10^3/3^3 + 10^4/4^4 + 10^5/5^5 + ... =
(9/10) * ( (10/1)^1 + (10/2)^2 + (10/3)^3 + (10/4)^4 + (10/5)^5 + ... =
(9/10) * Sum_{m>=1} (10/m)^m.

Examples

			168.05245375262168949085673320556724...
		

References

  • Xavier Merlin, Methodix Analyse, Ellipses, 1997, Exercice 22 p. 120.
  • J.-M. Monier, Analyse, Tome 3, 2ème année, MP.PSI.PC.PT, Dunod, 1997, Exercice 3.2.1.h" p. 248.

Crossrefs

Programs

  • Maple
    evalf((9/10) * Sum((10/n)^n, n=1..infinity), 100);
  • PARI
    (9/10) * suminf(k=1, (10/k)^k) \\ Michel Marcus, Jun 08 2019

Formula

Equals (9/10) * Sum_{k>=1} (10/k)^k.
Equals Sum_{n>=1} (1/A138908(n)).