A308335 Palindromic primes such that sum of digits = number of digits.
11, 10301, 1201021, 3001003, 10000900001, 10002520001, 10013131001, 10111311101, 10301110301, 11012121011, 11020302011, 11030103011, 11100500111, 11120102111, 12000500021, 12110101121, 13100100131, 30000500003, 30011111003, 1000027200001, 1000051500001
Offset: 1
Examples
3001003 is a term because it is a palindromic prime that has 7 digits and its sum of its digits is 7.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
- G. L. Honaker, Jr. and Chris Caldwell, Prime Curios!, 10201021.
Crossrefs
Programs
-
Mathematica
f[n_] := If[n==2, {11}, If[Mod[(n-1) (n-5), 6]>0, {}, Block[{h = (n - 1)/2, L={}, p}, Do[p = Select[ Flatten[ Permutations /@ IntegerPartitions[ (n - c)/2, {h}, Range[0, 9]], 1], MemberQ[{1, 3, 7, 9}, Last[#]] &]; L = Join[L, Select[ FromDigits /@ (Flatten[{Reverse[#], c, #}] & /@ p), PrimeQ]], {c, 1, n-2, 2}]; Sort[L]]]]; Join @@ (f /@ Range[13]) (* Giovanni Resta, Jun 06 2019 *)
-
PARI
isok(p) = isprime(p) && (d=digits(p)) && (Vecrev(d) == d) && (#d == vecsum(d)); \\ Michel Marcus, Jun 29 2019
Extensions
a(6)-a(21) from Jon E. Schoenfield, May 20 2019
Comments