cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308378 Numbers k such that phi(2k+1) = phi(2k+2).

Original entry on oeis.org

0, 1, 7, 127, 247, 487, 1312, 1627, 1852, 2593, 5857, 6682, 9157, 11467, 12772, 23107, 24607, 24667, 28822, 32767, 82087, 92317, 99157, 107887, 143497, 153697, 159637, 194122, 198742, 207637, 245767, 284407, 294703, 343492, 420127
Offset: 1

Views

Author

Torlach Rush, May 24 2019

Keywords

Comments

For n > 0, 2*a(n) + 1 is a term of A020884. This is because 2*a(n) + 1 is odd and every odd number is the difference of the squares of two consecutive numbers and hence are coprime.
For n > 0, (2*a(n) + 1) * (2*a(n) + 2) is a term of A024364. This is because (2*a(n) + 1) * (2*a(n) + 2) = 2*((a(n) + 1)^2 + (a(n) + 1) * a(n)) and gcd((a(n) + 1), a(n)) = 1.
For n > 0, a(n) is congruent to 1 or 4 mod 6.
2*a(n) + 1 is congruent to 1 or 3 mod 6 and is a term of A047241.
2*a(n) + 2 is congruent to 2 or 4 mod 6 and is a term of A047235.

Examples

			0 is a term because phi(1) = phi(2) = 1.
1 is a term because phi(3) = phi(4) = 2.
7 is a term because phi(15) = phi(16) = 8.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 9999], EulerPhi[2# + 1] == EulerPhi[2# + 2] &] (* Alonso del Arte, Jul 05 2019 *)
    Select[(#-1)/2&/@SequencePosition[EulerPhi[Range[900000]],{x_,x_}][[All,1]],IntegerQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 24 2019 *)
  • PARI
    lista(nn) = for(n=0, nn, if(eulerphi(2*n+1) == eulerphi(2*n+2), print1(n, ", ")));
    lista(430000)

Formula

a(n) = (A299535(n) - 2) / 2.