A308395 Numbers y such that x*(x+1) + y*(y+1) = z*(z+1) is solvable in positive integers x, z with x <= y.
2, 5, 6, 9, 10, 13, 14, 17, 18, 20, 21, 22, 24, 25, 26, 27, 29, 30, 33, 34, 35, 37, 38, 39, 41, 42, 44, 45, 46, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 61, 62, 65, 66, 68, 69, 70, 73, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 89, 90, 91, 92, 93, 94, 95, 97
Offset: 1
Keywords
Examples
14 is a term because 14*15 + 14*15 = 20*21.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A012132.
Programs
-
Mathematica
max = 220; lst = {}; For[x = 1, x < max, x++, For[y = x, y < max, y++, For[z = y, z < max, z++, If[x (x + 1) + y (y + 1) == z (z + 1), lst = AppendTo[lst, y]]]]]; Select[Union[lst], # < max/2 &]
-
Python
from sympy import integer_nthroot A308395_list, y, w = [], 1, 0 while len(A308395_list) < 10000: w += y z = 0 for x in range(1,y+1): z += x if integer_nthroot(8*(w+z)+1,2)[1]: A308395_list.append(y) break y += 1 # Chai Wah Wu, Aug 02 2019