cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308416 Values of m for which 2*p + m cannot be a square when p is a prime.

Original entry on oeis.org

1, 4, 8, 9, 13, 16, 17, 20, 24, 25, 28, 29, 33, 36, 37, 40, 41, 44, 48, 49, 52, 53, 56, 57, 61, 64, 65, 68, 69, 72, 73, 76, 80, 81, 84, 85, 88, 89, 92, 93, 97, 100, 101, 104, 105, 108, 109, 112, 113, 116, 120, 121, 124, 125, 128, 129, 132, 133, 136, 137, 141, 144, 145, 148, 149
Offset: 1

Views

Author

Bob Andriesse, May 25 2019

Keywords

Comments

m = i^2 + 4*j is a term for i > 0, 0 <= j < i. Proof: If p = 2, then i^2 < 2*p + m < (i+2)^2. Therefore (i+1)^2 = 4 + i^2 + 4*j, which leads to a contradiction. If p > 2 is such that 2*p + i^2 + 4*j = k^2, then k + i and k - i are both even numbers. Therefore 4 | 2*p + 4*j, which is also a contradiction.
The terms of this sequence can be obtained by starting with A042948 (numbers congruent to 0 or 1 mod 4) and deleting the terms of A028347 (n^2 - 4).

Crossrefs

Programs

  • Python
    a=[]
    a.append(0) #Offset starts at 1
    iMax=15 #Example value
    for i in range(1,iMax+1):
      for j in range(0,i):
       m=i*i+j*4
       a.append(m)
    a.sort()

Formula

Conjecture: for k > 0 and 1 <= j <= k, a(2k^2-2j+1) = 4k^2+4k-4j-3, a(2k^2-2j+2) = 4k^2+4k-4j, a(2k^2+2k-2j+1) = 4k^2+8k-4j, a(2k^2+2k-2j+2) = 4k^2+8k-4j+1. - Jinyuan Wang, Jul 23 2019