cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A308426 Sum of the smallest side lengths of all integer-sided triangles with perimeter n whose sides are nonsquarefree.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 0, 8, 12, 8, 9, 12, 8, 9, 0, 8, 17, 9, 0, 24, 9, 12, 9, 24, 18, 24, 9, 44, 18, 20, 9, 48, 18, 36, 17, 77, 33, 59, 36, 83, 70, 67, 65, 123, 88, 63, 81, 111, 92, 89, 74, 169, 75, 90, 66, 154
Offset: 1

Views

Author

Wesley Ivan Hurt, May 26 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[k (1 - MoebiusMu[i]^2)*(1 - MoebiusMu[k]^2)*(1 - MoebiusMu[n - i - k]^2)*Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}]

Formula

a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} sign(floor((i+k)/(n-i-k+1))) * (1 - mu(i)^2) * (1 - mu(k)^2) * (1 - mu(n-i-k)^2) * k, where mu is the Möbius function (A008683).

A308425 Sum of the perimeters of all integer-sided triangles with perimeter n whose side lengths are nonsquarefree.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 0, 24, 50, 26, 27, 56, 29, 30, 0, 32, 66, 34, 0, 108, 37, 76, 39, 120, 82, 126, 43, 220, 90, 92, 47, 192, 98, 150, 102, 364, 212, 270, 220, 392, 399, 348, 354, 600, 427, 310, 378, 512, 455
Offset: 1

Views

Author

Wesley Ivan Hurt, May 26 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n*Sum[Sum[(1 - MoebiusMu[i]^2)*(1 - MoebiusMu[k]^2)*(1 - MoebiusMu[n - i - k]^2)*Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}]

Formula

a(n) = n * A308424(n).
a(n) = n * Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} sign(floor((i+k)/(n-i-k+1))) * (1 - mu(i)^2) * (1 - mu(k)^2) * (1 - mu(n-i-k)^2), where mu is the Möbius function (A008683).
Showing 1-2 of 2 results.