A308438 a(n) is the smallest prime p whose decimal expansion begins with n and is such that the next prime is p+2n, or -1 if no such prime exists.
11, 223, 31, 401, 547, 619, 773, 8581, 9109, 10223, 1129, 12073, 130553, 14563, 150011, 161471, 17257, 18803, 191189, 20809, 210557, 225383, 237091, 240209, 2509433, 2613397, 277429, 283211, 2901649, 308153, 313409, 3204139, 3300613, 3419063, 3507739, 360091, 3727313, 3806347, 3930061, 4045421, 41018911
Offset: 1
Examples
For n = 5, 547 is a prime starting with 5, and the next prime after 547 is 557 = 547 + 2*5. Since this is the least number with these properties, a(5) = 547.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..100
Programs
-
Maple
f:= proc(n) local d,p,q; for d from 0 do p:= nextprime(n*10^d-1); do q:= nextprime(p); if q - p = 2*n then return p fi; if q >= (n+1)*10^d then break fi; p:= q; od; od; end proc: map(f, [$1..50]);
-
Python
from sympy import nextprime def A308438(n): l, p = 1, nextprime(n) while True: q = nextprime(p) if q-p == 2*n: return p p = q if p >= (n+1)*l: l *= 10 p = nextprime(n*l) # Chai Wah Wu, May 31 2019