cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308446 Expansion of Product_{k>=1} 1/(1 - x^k)^Fibonacci(2*k).

Original entry on oeis.org

1, 1, 4, 12, 39, 118, 371, 1129, 3468, 10524, 31910, 96155, 289016, 865000, 2581577, 7679762, 22784896, 67418329, 199004329, 586052299, 1722165404, 5050349249, 14781877481, 43185726143, 125949155473, 366716549379, 1066057177765, 3094398005409, 8969054893842
Offset: 0

Views

Author

Ilya Gutkovskiy, May 27 2019

Keywords

Comments

Euler transform of A001906.

Crossrefs

Programs

  • Mathematica
    nmax = 28; CoefficientList[Series[Product[1/(1 - x^k)^Fibonacci[2 k], {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d Fibonacci[2 d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 28}]

Formula

a(n) ~ phi^(2*n) * exp(2*sqrt(n)/5^(1/4) - 3/10 + S) / (2 * 5^(1/8) * sqrt(Pi) * n^(3/4)), where S = Sum_{k>=2} 1/((phi^(2*k) - 3 + 1/phi^(2*k))*k) = 0.155349347463140787939176213528043741704916536093946010733676987281... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, May 28 2019