cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308447 Expansion of Sum_{k>=1} mu(k)*log(1 + x^k/((1 - x^k)*(1 - 2*x^k)))/k.

Original entry on oeis.org

1, 2, 4, 5, 8, 8, 16, 25, 52, 98, 192, 345, 640, 1162, 2164, 4050, 7680, 14534, 27648, 52479, 99956, 190554, 364544, 698525, 1341848, 2580790, 4971616, 9587565, 18513920, 35790276, 69271552, 134211600, 260297012, 505286430, 981714296, 1908881520, 3714580480, 7233615306
Offset: 1

Views

Author

Ilya Gutkovskiy, May 27 2019

Keywords

Comments

Inverse Euler transform of A000225.

Crossrefs

Programs

  • Mathematica
    nmax = 38; CoefficientList[Series[Sum[MoebiusMu[k] Log[1 + x^k/((1 - x^k) (1 - 2 x^k))]/k, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    nmax = 50; s = ConstantArray[0, nmax]; Do[s[[j]] = j*(2^ j - 1) - Sum[s[[d]]*(2^(j - d) - 1), {d, 1, j - 1}], {j, 1, nmax}]; Table[Sum[MoebiusMu[k/d]*s[[d]], {d, Divisors[k]}]/k, {k, 1, nmax}] (* Vaclav Kotesovec, Aug 10 2019 *)

Formula

-1 + Product_{n>=1} 1/(1 - x^n)^a(n) = g.f. of A000225.
a(n) ~ 2^n/n. - Vaclav Kotesovec, May 28 2019