A308482 Composites c such that T_{c-1} == (c/3)*3^(c-1) (mod c), where T_i denotes the i-th central trinomial coefficient (A002426) and (/) denotes the Kronecker symbol.
4, 9, 20, 25, 27, 40, 49, 80, 81, 121, 169, 189, 243, 272, 289, 361, 369, 400, 416, 470, 529, 544, 567, 729, 841, 961, 1071, 1323, 1369, 1539, 1681, 1849, 2000, 2187, 2209, 2809, 2889, 3213, 3481, 3721, 4489, 4617, 5041, 5329, 6241, 6561, 6889, 7749, 7921, 8667
Offset: 1
Keywords
Links
- Hui-Qin Cao and Zhi-Wei Sun, Some congruences involving binomial coefficients, Colloquium Mathematicum 139 (2015), 127-136, arXiv:1006.3069 [math.NT], 2010-2015.
- Zhi-Wei Sun, Open Conjectures on Congruences, arXiv:0911.5665 [math.NT], 2011.
Crossrefs
Cf. A002426.
Programs
-
Mathematica
aQ[n_] := CompositeQ[n] && Divisible[3^(n-1)*(Hypergeometric2F1[1/2, 1-n, 1, 4/3] - JacobiSymbol[n,3]) ,n]; Select[Range[1000], aQ] (* Amiram Eldar, Jul 10 2019 *)
-
PARI
t(n) = sum(k=0, floor(n/2), binomial(n, k)*binomial(n-k, k)) is(n) = Mod(t(n-1), n)==kronecker(n, 3)*3^(n-1) forcomposite(c=1, , if(is(c), print1(c, ", ")))
Extensions
a(45)-a(50) from Amiram Eldar, Jul 10 2019
Comments