A308488 a(n) is the smallest n-gonal pyramidal number greater than 1 which is also n-gonal; a(n) = 0 when one does not exist.
10, 4900, 0, 946, 0, 1045, 0, 175, 23725, 0, 0, 441, 0, 0, 975061, 0, 0, 3578401, 0, 0, 10680265, 0, 0, 27453385, 0, 0, 63016921, 23001, 0, 132361021, 0, 0, 258815701, 0, 0, 477132085, 0, 0, 55202400, 0, 245905, 1408778281, 0, 0, 2286380881, 0, 0, 314755, 0, 0
Offset: 3
Keywords
Links
- James Grime and Brady Haran, The Best Way to Pack Spheres, Numberphile video (2018).
- M. Kaneko and K. Tachibana, When is a Polygonal Pyramid Number Again Polygonal?, Rocky Mountain Journal of Mathematics, 32 (2002).
- Matt Parker and Brady Haran, 90,525,801,730 Cannon Balls, Numberphile video (2019).
Programs
-
PARI
A308488_vec(lim,J=10^6)={my( pyramid(s,n)=(3*n^2 + n^3*(s-2)-n*(s-5))/6, check(s)=j=if(lift(Mod(s,3))==2,((s-2)^2)/3-2,J);m=3;while(m<=j,if(ispolygonal(pyramid(s,m),s),return(pyramid(s,m)),m++));0); vector(lim,s,check(s+2))}
Comments