A308521 Expansion of e.g.f. (sec(x) + tan(x))/(1 - 2*x).
1, 3, 13, 80, 645, 6466, 77653, 1087414, 17400009, 313208098, 6264212481, 137813028374, 3307515383741, 85995422345522, 2407872025035597, 72236162654825222, 2311557224345919249, 78592945837626597442, 2829346052559437183353, 107515150026347498080246
Offset: 0
Keywords
Links
Programs
-
Maple
N:= 25: # for a(0)..a(N) S:= series((sec(x)+tan(x))/(1-2*x),x,N+1): seq(coeff(S,x,n)*n!,n=0..N); # Robert Israel, Jun 06 2019
-
Mathematica
nmax = 19; CoefficientList[Series[(Sec[x] + Tan[x])/(1 - 2 x), {x, 0, nmax}], x] Range[0, nmax]! t[n_, 0] := 2^n n!; t[n_, k_] := t[n, k] = t[n, k - 1] + t[n - 1, n - k]; a[n_] := t[n, n]; Array[a, 20, 0]
-
Python
from itertools import count, islice, accumulate def A308521_gen(): # generator of terms blist, m = tuple(), 1 for i in count(1): yield (blist := tuple(accumulate(reversed(blist),initial=m)))[-1] m *= 2*i A308521_list = list(islice(A308521_gen(),30)) # Chai Wah Wu, Jun 11 2022
Formula
a(n) ~ n! * (sec(1/2) + tan(1/2)) * 2^n. - Vaclav Kotesovec, Jun 07 2019
Comments