cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308546 Number of double-closed subsets of {1..n}.

Original entry on oeis.org

1, 2, 3, 6, 8, 16, 24, 48, 60, 120, 180, 360, 480, 960, 1440, 2880, 3456, 6912, 10368, 20736, 27648, 55296, 82944, 165888, 207360, 414720, 622080, 1244160, 1658880, 3317760, 4976640, 9953280, 11612160, 23224320, 34836480, 69672960, 92897280
Offset: 0

Views

Author

Gus Wiseman, Jun 06 2019

Keywords

Comments

These are subsets containing twice any element whose double is <= n.
Also the number of subsets of {1..n} containing half of every element that is even. For example, the a(6) = 24 subsets are:
{} {1} {1,2} {1,2,3} {1,2,3,4} {1,2,3,4,5} {1,2,3,4,5,6}
{3} {1,3} {1,2,4} {1,2,3,5} {1,2,3,4,6}
{5} {1,5} {1,2,5} {1,2,3,6} {1,2,3,5,6}
{3,5} {1,3,5} {1,2,4,5}
{3,6} {1,3,6} {1,3,5,6}
{3,5,6}

Examples

			The a(6) = 24 subsets:
  {}  {4}  {2,4}  {1,2,4}  {1,2,4,5}  {1,2,3,4,6}  {1,2,3,4,5,6}
      {5}  {3,6}  {2,4,5}  {1,2,4,6}  {1,2,4,5,6}
      {6}  {4,5}  {2,4,6}  {2,3,4,6}  {2,3,4,5,6}
           {4,6}  {3,4,6}  {2,4,5,6}
           {5,6}  {3,5,6}  {3,4,5,6}
                  {4,5,6}
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],SubsetQ[#,Select[2*#,#<=n&]]&]],{n,0,10}]

Formula

From Charlie Neder, Jun 10 2019: (Start)
a(n) = Product_{k < n/2} (2 + floor(log_2(n/(2k+1)))).
a(0) = 1, a(n) = a(n-1) * (1 + 1/A001511(n)). (End)

Extensions

a(21)-a(36) from Charlie Neder, Jun 10 2019