cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A007865 Number of sum-free subsets of {1, ..., n}.

Original entry on oeis.org

1, 2, 3, 6, 9, 16, 24, 42, 61, 108, 151, 253, 369, 607, 847, 1400, 1954, 3139, 4398, 6976, 9583, 15456, 20982, 32816, 45417, 70109, 94499, 148234, 200768, 308213, 415543, 634270, 849877, 1311244, 1739022, 2630061, 3540355, 5344961, 7051789, 10747207, 14158720, 21295570, 28188520
Offset: 0

Views

Author

Keywords

Comments

More precisely, subsets of {1,...,n} containing no solutions of x+y=z.
There are two proofs that a(n) is 2^{n/2}(1+o(1)), as Paul Erdős and I conjectured.
In sumset notation, number of subsets A of {1,...,n} such that the intersection of A and 2A is empty. Using the Mathematica program, all such subsets can be printed. - T. D. Noe, Apr 20 2004
The Sapozhenko paper has many additional references.
If this sequence counts sum-free sets, then A326083 counts sum-closed sets, which is different from sum-full sets (A093971). - Gus Wiseman, Jul 08 2019

Examples

			{} has one sum-free subset, the empty set, so a(0)=1.
{1} has two sum-free subsets, {} and {1}, so a(1)=2.
a(2) = 3: 0,1,2.
a(3) = 6: 0,1,2,3,13,23.
a(4) = 9: 0,1,2,3,4,13,14,23,34.
		

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 180-183.

Crossrefs

See A085489 for another version.
Cf. A211316, A211317, A093970, A093971 (number of sum-full subsets of 1..n).

Programs

  • Maple
    S3S:= {{}}: a[0]:= 1: for n from 1 to 35 do S3S:= S3S union map(t -> t union {n}, select(t -> (t intersect map(q -> n-q,t)={}),S3S)); a[n]:= nops(S3S) od: seq(a[n],n=0..35); # Code for computing (the number of) sum-free subsets of {1, ..., n} - Robert Israel
  • Mathematica
    SumFreeSet[ 0 ] = {{}}; SumFreeSet[ n_ ] := SumFreeSet[ n ] = Union[ SumFreeSet[ n - 1 ], Union[ #, {n} ] & /@ Select[ SumFreeSet[ n - 1 ], Intersection[ #, n - # ] == {} & ] ] As a check, enter Length /@ SumFreeSet /@ Range[ 0, 30 ] Alternatively, use NestList. n = 0; Length /@ NestList[ (++n; Union[ #, Union[ #, {n} ] & /@ Select[ #, Intersection[ #, n - # ] == {} & ] ]) &, {{}}, 30 ] (* from Paul Abbott, based on Robert Israel's Maple code *)
    Timing[ n = 0; Last[ Reap[ Nest[ (++n; Sow[ Length[ # ] ]; Union[ #, Union[ #, {n} ]& /@ Select[ #, Intersection[ #, n - # ] == {} & ] ]) &, {{}}, 36 ] ] ] ] (* improved code from Paul Abbott, Nov 24 2005 *)
    Table[Length[Select[Subsets[Range[n]],Intersection[#,Total/@Tuples[#,2]]=={}&]],{n,1,10}] (* Gus Wiseman, Jul 08 2019 *)
  • PARI
    \\ good only for n <= 25:
    sumfree(v) = {for(i=1, #v, for (j=1, i, if (setsearch(v, v[i]+v[j]), return (0)););); return (1);}
    a(n) = {my(nb = 0); forsubset(n, s, if (sumfree(Set(s)), nb++);); nb;} \\ Michel Marcus, Nov 08 2020

Formula

a(n) = A050291(n)-A088810(n) = A085489(n)-A088811(n) = A050291(n)+A085489(n)-A088813(n). - Reinhard Zumkeller, Oct 19 2003

Extensions

More terms from John W. Layman, Oct 21 2000
Extended through a(35) by Robert Israel, Nov 16 2005
a(36)-a(37) from Alec Mihailovs (alec(AT)mihailovs.com) (using Robert Israel's procedure), Nov 16 2005
a(38) from Eric W. Weisstein, Nov 17 2005
a(39)-a(42) from Eric W. Weisstein, Nov 28 2005, using Paul Abbott's Mathematica code

A093971 Number of sum-full subsets of {1,...,n}; subsets A such that there is a solution to x+y=z for x,y,z in A.

Original entry on oeis.org

0, 1, 2, 7, 16, 40, 86, 195, 404, 873, 1795, 3727, 7585, 15537, 31368, 63582, 127933, 257746, 517312, 1038993, 2081696, 4173322, 8355792, 16731799, 33484323, 67014365, 134069494, 268234688, 536562699, 1073326281, 2146849378, 4294117419, 8588623348, 17178130162
Offset: 1

Views

Author

T. D. Noe, Apr 20 2004

Keywords

Comments

In sumset notation, number of subsets A of {1,...,n} such that the intersection of A and 2A is nonempty.
A variation of binary sum-full sets where parts can be re-used, this sequence counts subsets of {1..n} containing a part equal to the sum of two other (possibly equal) parts. The complement is counted by A007865. The non-binary version is A364914. For non-re-usable parts we have A088809. - Gus Wiseman, Aug 14 2023

Examples

			The a(1) = 0 through a(5) = 16 subsets:
  .  {1,2}  {1,2}    {1,2}      {1,2}
            {1,2,3}  {2,4}      {2,4}
                     {1,2,3}    {1,2,3}
                     {1,2,4}    {1,2,4}
                     {1,3,4}    {1,2,5}
                     {2,3,4}    {1,3,4}
                     {1,2,3,4}  {1,4,5}
                                {2,3,4}
                                {2,3,5}
                                {2,4,5}
                                {1,2,3,4}
                                {1,2,3,5}
                                {1,2,4,5}
                                {1,3,4,5}
                                {2,3,4,5}
                                {1,2,3,4,5}
		

Crossrefs

The complement is counted by A007865.
The version without re-usable parts is A088809 (differences A364756), complement A085489 (differences A364755).
The non-binary version is A364914, complement A326083.
The non-binary version w/o re-usable parts is A364534, complement A151897.
The version for partitions is A363225:
- ranks A364348,
- strict A363226,
- non-binary A364839,
- without re-usable parts A237113,
- non-binary without re-usable parts A237668.
The complement for partitions is A364345:
- ranks A364347,
- strict A364346,
- non-binary A364350,
- without re-usable parts A236912,
- non-binary without re-usable parts A237667.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],Intersection[#,Total/@Tuples[#,2]]!={}&]],{n,0,10}] (* Gus Wiseman, Aug 14 2023 *)

Formula

a(n) = 2^n - A007865(n).

Extensions

Terms a(31) and beyond from Fausto A. C. Cariboni, Oct 01 2020

A151897 Number of subsets of {1, 2, ..., n} such that no member is a sum of distinct other members.

Original entry on oeis.org

1, 2, 4, 7, 13, 22, 37, 60, 100, 155, 249, 381, 591, 889, 1365, 2009, 3047, 4453, 6602, 9567, 14151, 20228, 29654, 42302, 61369, 87108, 126066, 177580, 256039, 360304, 515740, 724069, 1036860, 1448746, 2069526, 2893311, 4117725, 5749540, 8186555
Offset: 0

Views

Author

David Wasserman, Apr 16 2008

Keywords

Comments

This sequence and A085489 first differ at n = 7. a(7) = 60, A085489(7) = 61. A085489(7) includes {1, 2, 4, 7}, which is excluded from a(7) because 1+2+4 = 7.
If this sequence counts sum-free sets, A326080 counts sum-closed sets, which are different from sum-full sets (A093971). - Gus Wiseman, Jun 07 2019

Examples

			a(4) = 13, including all subsets of {1, 2, 3, 4} except {1, 2, 3} (excluded
because 1+2 = 3), {1, 3, 4} (excluded because 1+3 = 4), and {1, 2, 3, 4} (excluded for both reasons.)
From _Gus Wiseman_, Jun 07 2019: (Start)
The a(0) = 1 through a(4) = 13 subsets:
  {}  {}   {}     {}     {}
      {1}  {1}    {1}    {1}
           {2}    {2}    {2}
           {1,2}  {3}    {3}
                  {1,2}  {4}
                  {1,3}  {1,2}
                  {2,3}  {1,3}
                         {1,4}
                         {2,3}
                         {2,4}
                         {3,4}
                         {1,2,4}
                         {2,3,4}
(End)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],Intersection[#,Plus@@@Subsets[#,{2,Length[#]}]]=={}&]],{n,0,10}] (* Gus Wiseman, Jun 07 2019 *)

Extensions

a(0) = 1 prepended by Gus Wiseman, Jun 07 2019

A085489 a(n) is the number of subsets of {1,...,n} containing no solutions to x+y=z with x and y distinct (one version of "sum-free subsets").

Original entry on oeis.org

1, 2, 4, 7, 13, 22, 37, 61, 102, 162, 261, 410, 646, 1001, 1553, 2370, 3645, 5515, 8303, 12470, 18713, 27811, 41244, 60962, 89733, 131870, 192522, 281125, 408680, 593880, 855661, 1238592, 1779614, 2563476, 3660084, 5255913, 7473380, 10696444, 15137517
Offset: 0

Views

Author

Eric W. Weisstein, Jul 02 2003

Keywords

Comments

First differs from A151897 at a(7) = 61, A151897(7) = 60. The one subset counted under a(7) but not under A151897(7) is {1,2,4,7}. - Gus Wiseman, Jun 07 2019

Examples

			From _Gus Wiseman_, Jun 07 2019: (Start)
The a(0) = 1 through a(4) = 13 subsets:
  {}  {}   {}     {}     {}
      {1}  {1}    {1}    {1}
           {2}    {2}    {2}
           {1,2}  {3}    {3}
                  {1,2}  {4}
                  {1,3}  {1,2}
                  {2,3}  {1,3}
                         {1,4}
                         {2,3}
                         {2,4}
                         {3,4}
                         {1,2,4}
                         {2,3,4}
The a(5) = 22 subsets:
  {}  {1}  {1,2}  {1,2,4}
      {2}  {1,3}  {1,2,5}
      {3}  {1,4}  {1,3,5}
      {4}  {1,5}  {2,3,4}
      {5}  {2,3}  {2,4,5}
           {2,4}  {3,4,5}
           {2,5}
           {3,4}
           {3,5}
           {4,5}
(End)
		

Crossrefs

See A007865 for another version.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],Intersection[ #,Select[ Plus@@@ Subsets[ #,{2}],#<=n&]]=={}&]],{n,0,10}] (* Gus Wiseman, Jun 07 2019 *)

Formula

a(n) = 2^n - A088809(n). - Reinhard Zumkeller, Oct 19 2003

Extensions

More terms from Reinhard Zumkeller, Jul 13 2003
Edited by David Wasserman, Apr 16 2008
a(0) = 1 prepended by Gus Wiseman, Jun 07 2019

A364914 Number of subsets of {1..n} such that some element can be written as a nonnegative linear combination of the others.

Original entry on oeis.org

0, 0, 1, 3, 9, 20, 48, 101, 219, 454, 944, 1917, 3925, 7915, 16004, 32188, 64751, 129822, 260489, 521672, 1045060, 2091808, 4187047, 8377255, 16762285, 33531228, 67077485, 134170217, 268371678, 536772231, 1073611321, 2147282291, 4294697258, 8589527163, 17179321094
Offset: 0

Views

Author

Gus Wiseman, Aug 17 2023

Keywords

Comments

A variation of non-binary combination-full sets where parts can be re-used. The complement is counted by A326083. The binary version is A093971. For non-re-usable parts we have A364534. First differences are A365046.

Examples

			The set {3,4,5,17} has 17 = 1*3 + 1*4 + 2*5, so is counted under a(17).
The a(0) = 0 through a(5) = 20 subsets:
  .  .  {1,2}  {1,2}    {1,2}      {1,2}
               {1,3}    {1,3}      {1,3}
               {1,2,3}  {1,4}      {1,4}
                        {2,4}      {1,5}
                        {1,2,3}    {2,4}
                        {1,2,4}    {1,2,3}
                        {1,3,4}    {1,2,4}
                        {2,3,4}    {1,2,5}
                        {1,2,3,4}  {1,3,4}
                                   {1,3,5}
                                   {1,4,5}
                                   {2,3,4}
                                   {2,3,5}
                                   {2,4,5}
                                   {1,2,3,4}
                                   {1,2,3,5}
                                   {1,2,4,5}
                                   {1,3,4,5}
                                   {2,3,4,5}
                                   {1,2,3,4,5}
		

Crossrefs

The binary complement is A007865.
The binary version without re-usable parts is A088809.
The binary version is A093971.
The complement without re-usable parts is A151897.
The complement is counted by A326083.
The version without re-usable parts is A364534.
The version for strict partitions is A364839, complement A364350.
The version for partitions is A364913.
The version for positive combinations is A365043, complement A365044.
First differences are A365046.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Subsets[Range[n]],Or@@Table[combs[#[[k]],Delete[#,k]]!={},{k,Length[#]}]&]],{n,0,10}]
  • Python
    from itertools import combinations
    from sympy.utilities.iterables import partitions
    def A364914(n):
        c, mlist = 0, []
        for m in range(1,n+1):
            t = set()
            for p in partitions(m,k=m-1):
                t.add(tuple(sorted(p.keys())))
            mlist.append([set(d) for d in t])
        for k in range(2,n+1):
            for w in combinations(range(1,n+1),k):
                ws = set(w)
                for d in w:
                    for s in mlist[d-1]:
                        if s <= ws:
                            c += 1
                            break
                    else:
                        continue
                    break
        return c # Chai Wah Wu, Nov 17 2023

Extensions

a(12)-a(34) from Chai Wah Wu, Nov 17 2023

A124506 Number of numerical semigroups with Frobenius number n; that is, numerical semigroups for which the largest integer not belonging to them is n.

Original entry on oeis.org

1, 1, 2, 2, 5, 4, 11, 10, 21, 22, 51, 40, 106, 103, 200, 205, 465, 405, 961, 900, 1828, 1913, 4096, 3578, 8273, 8175, 16132, 16267, 34903, 31822, 70854, 68681, 137391, 140661, 292081, 270258, 591443, 582453, 1156012
Offset: 1

Views

Author

P. A. Garcia-Sanchez (pedro(AT)ugr.es), Dec 18 2006

Keywords

Comments

From Gus Wiseman, Aug 28 2023: (Start)
Appears to be the number of subsets of {1..n} containing n such that no element can be written as a nonnegative linear combination of the others, first differences of A326083. For example, the a(1) = 1 through a(8) = 10 subsets are:
{1} {2} {3} {4} {5} {6} {7} {8}
{2,3} {3,4} {2,5} {4,6} {2,7} {3,8}
{3,5} {5,6} {3,7} {5,8}
{4,5} {4,5,6} {4,7} {6,8}
{3,4,5} {5,7} {7,8}
{6,7} {3,7,8}
{3,5,7} {5,6,8}
{4,5,7} {5,7,8}
{4,6,7} {6,7,8}
{5,6,7} {5,6,7,8}
{4,5,6,7}
Note that these subsets do not all generate numerical semigroups, as their GCD is unrestricted, cf. A358392. The complement is counted by A365046, first differences of A364914.
(End)

Examples

			a(1) = 1 via <2,3> = {0,2,3,4,...}; the largest missing number is 1.
a(2) = 1 via <3,4,5> = {0,3,4,5,...}; the largest missing number is 2.
a(3) = 2 via <2,5> = {0,2,4,5,...}; and <4,5,6,7> = {0,4,5,6,7,...} where in both the largest missing number is 3.
a(4) = 2 via <3,5,7> = {0,3,5,6,7,...} and <5,6,7,8,9> = {5,6,7,8,9,...} where in both the largest missing number is 4.
		

Crossrefs

Cf. A158206. [From Steven Finch, Mar 13 2009]
A288728 counts sum-free sets, first differences of A007865.
A364350 counts combination-free partitions, complement A364839.

Programs

  • GAP
    The sequence was originally generated by a C program and a Haskell script. The sequence can be obtained by using the function NumericalSemigroupsWithFrobeniusNumber included in the numericalsgps GAP package.

A103580 Number of nonempty subsets S of {1,2,3,...,n} that have the property that no element x of S is a nonnegative integer linear combination of elements of S-{x}.

Original entry on oeis.org

1, 2, 4, 6, 11, 15, 26, 36, 57, 79, 130, 170, 276, 379, 579, 784, 1249, 1654, 2615, 3515, 5343, 7256, 11352, 14930, 23203, 31378, 47510, 63777, 98680, 130502, 201356, 270037, 407428, 548089, 840170, 1110428, 1701871, 2284324, 3440336, 4601655
Offset: 1

Views

Author

Jeffrey Shallit, Mar 23 2005

Keywords

Examples

			a(4) = 6 because the only permissible subsets are {1}, {2}, {3}, {4}, {2,3}, {3,4}.
From _Gus Wiseman_, Jun 07 2019: (Start)
The a(1) = 1 through a(6) = 15 nonempty subsets of {1..n} containing none of their own non-singleton nonzero nonnegative linear combinations are:
  {1}  {1}  {1}    {1}    {1}      {1}
       {2}  {2}    {2}    {2}      {2}
            {3}    {3}    {3}      {3}
            {2,3}  {4}    {4}      {4}
                   {2,3}  {5}      {5}
                   {3,4}  {2,3}    {6}
                          {2,5}    {2,3}
                          {3,4}    {2,5}
                          {3,5}    {3,4}
                          {4,5}    {3,5}
                          {3,4,5}  {4,5}
                                   {4,6}
                                   {5,6}
                                   {3,4,5}
                                   {4,5,6}
a(n) is also the number of nonempty subsets of {1..n} containing all of their own nonzero nonnegative linear combinations <= n. For example the a(1) = 1 through a(6) = 15 subsets are:
  {1}  {2}    {2}      {3}        {3}          {4}
       {1,2}  {3}      {4}        {4}          {5}
              {2,3}    {2,4}      {5}          {6}
              {1,2,3}  {3,4}      {2,4}        {3,6}
                       {2,3,4}    {3,4}        {4,5}
                       {1,2,3,4}  {3,5}        {4,6}
                                  {4,5}        {5,6}
                                  {2,4,5}      {2,4,6}
                                  {3,4,5}      {3,4,6}
                                  {2,3,4,5}    {3,5,6}
                                  {1,2,3,4,5}  {4,5,6}
                                               {2,4,5,6}
                                               {3,4,5,6}
                                               {2,3,4,5,6}
                                               {1,2,3,4,5,6}
(End)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n],{1,n}],SubsetQ[#,Select[Plus@@@Tuples[#,2],#<=n&]]&]],{n,10}] (* Gus Wiseman, Jun 07 2019 *)

Formula

a(n) = A326083(n) - 1. - Gus Wiseman, Jun 07 2019

Extensions

More terms from David Wasserman, Apr 16 2008

A365046 Number of subsets of {1..n} containing n such that some element can be written as a nonnegative linear combination of the others.

Original entry on oeis.org

0, 0, 1, 2, 6, 11, 28, 53, 118, 235, 490, 973, 2008, 3990, 8089, 16184, 32563, 65071, 130667, 261183, 523388, 1046748, 2095239, 4190208, 8385030, 16768943, 33546257, 67092732, 134201461, 268400553, 536839090, 1073670970, 2147414967, 4294829905, 8589793931
Offset: 0

Views

Author

Gus Wiseman, Aug 24 2023

Keywords

Comments

Includes all subsets containing both 1 and n.

Examples

			The subset {3,4,10} has 10 = 2*3 + 1*4 so is counted under a(10).
The a(0) = 0 through a(5) = 11 subsets:
  .  .  {1,2}  {1,3}    {1,4}      {1,5}
               {1,2,3}  {2,4}      {1,2,5}
                        {1,2,4}    {1,3,5}
                        {1,3,4}    {1,4,5}
                        {2,3,4}    {2,3,5}
                        {1,2,3,4}  {2,4,5}
                                   {1,2,3,5}
                                   {1,2,4,5}
                                   {1,3,4,5}
                                   {2,3,4,5}
                                   {1,2,3,4,5}
		

Crossrefs

The complement is A124506, first differences of A326083.
The binary complement is A288728, first differences of A007865.
First differences of A364914.
The positive version is A365042, first differences of A365043.
The positive complement is counted by A365045, first differences of A365044.
Without re-usable parts we have A365069, first differences of A364534.
The binary version is A365070, first differences of A093971.
A364350 counts combination-free strict partitions, complement A364839.
A085489 and A364755 count subsets without the sum of two distinct elements.
A088809 and A364756 count subsets with the sum of two distinct elements.
A364913 counts combination-full partitions.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&Or@@Table[combs[#[[k]],Union[Delete[#,k]]]!={},{k,Length[#]}]&]],{n,0,10}]

Formula

a(n+1) = 2^n - A124506(n).

A050291 Number of double-free subsets of {1, 2, ..., n}.

Original entry on oeis.org

1, 2, 3, 6, 10, 20, 30, 60, 96, 192, 288, 576, 960, 1920, 2880, 5760, 9360, 18720, 28080, 56160, 93600, 187200, 280800, 561600, 898560, 1797120, 2695680, 5391360, 8985600, 17971200, 26956800, 53913600, 87091200, 174182400, 261273600, 522547200, 870912000
Offset: 0

Views

Author

Keywords

Comments

A set is double-free if it does not contain both x and 2x.
So these are equally "half-free" subsets. - Gus Wiseman, Jul 08 2019

Examples

			From _Gus Wiseman_, Jul 08 2019: (Start)
The a(0) = 1 through a(5) = 20 double-free subsets:
  {}  {}   {}   {}     {}       {}
      {1}  {1}  {1}    {1}      {1}
           {2}  {2}    {2}      {2}
                {3}    {3}      {3}
                {1,3}  {4}      {4}
                {2,3}  {1,3}    {5}
                       {1,4}    {1,3}
                       {2,3}    {1,4}
                       {3,4}    {1,5}
                       {1,3,4}  {2,3}
                                {2,5}
                                {3,4}
                                {3,5}
                                {4,5}
                                {1,3,4}
                                {1,3,5}
                                {1,4,5}
                                {2,3,5}
                                {3,4,5}
                                {1,3,4,5}
(End)
		

References

  • Wang, E. T. H. ``On Double-Free Sets of Integers.'' Ars Combin. 28, 97-100, 1989.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, (F-> (p-> a(n-1)*F(p+3)
          /F(p+2))(padic[ordp](n, 2)))(j-> (<<0|1>, <1|1>>^j)[1, 2]))
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Jan 16 2019
  • Mathematica
    a[n_] := a[n] = (b = IntegerExponent[2n, 2]; a[n-1]*Fibonacci[b+2]/Fibonacci[b+1]); a[1]=2; Table[a[n], {n, 1, 34}] (* Jean-François Alcover, Oct 10 2012, from first formula *)
    Table[Length[Select[Subsets[Range[n]],Intersection[#,#/2]=={}&]],{n,0,10}] (* Gus Wiseman, Jul 08 2019 *)
  • PARI
    first(n)=my(v=vector(n)); v[1]=2; for(k=2,n, v[k]=v[k-1]*fibonacci(valuation(k,2)+3)/fibonacci(valuation(k,2)+2)); v \\ Charles R Greathouse IV, Feb 07 2017

Formula

a(n) = a(n-1)*Fibonacci(b(2n)+2)/Fibonacci(b(2n)+1), Fibonacci = A000045, b = A007814.
a(n) = 2^n - A088808(n). - Reinhard Zumkeller, Oct 19 2003

Extensions

Extended with formula by Christian G. Bower, Sep 15 1999
a(0)=1 prepended by Alois P. Heinz, Jan 16 2019

A365073 Number of subsets of {1..n} that can be linearly combined using nonnegative coefficients to obtain n.

Original entry on oeis.org

1, 1, 3, 6, 14, 26, 60, 112, 244, 480, 992, 1944, 4048, 7936, 16176, 32320, 65088, 129504, 261248, 520448, 1046208, 2090240, 4186624, 8365696, 16766464, 33503744, 67064064, 134113280, 268347392, 536546816, 1073575936, 2146703360, 4294425600, 8588476416, 17178349568
Offset: 0

Views

Author

Gus Wiseman, Sep 01 2023

Keywords

Examples

			The subset {2,3,6} has 7 = 2*2 + 1*3 + 0*6 so is counted under a(7).
The a(1) = 1 through a(4) = 14 subsets:
  {1}  {1}    {1}      {1}
       {2}    {3}      {2}
       {1,2}  {1,2}    {4}
              {1,3}    {1,2}
              {2,3}    {1,3}
              {1,2,3}  {1,4}
                       {2,3}
                       {2,4}
                       {3,4}
                       {1,2,3}
                       {1,2,4}
                       {1,3,4}
                       {2,3,4}
                       {1,2,3,4}
		

Crossrefs

The case of positive coefficients is A088314.
The case of subsets containing n is A131577.
The binary version is A365314, positive A365315.
The binary complement is A365320, positive A365321.
The positive complement is counted by A365322.
A version for partitions is A365379, strict A365311.
The complement is counted by A365380.
The case of subsets without n is A365542.
A326083 and A124506 appear to count combination-free subsets.
A179822 and A326080 count sum-closed subsets.
A364350 counts combination-free strict partitions.
A364914 and A365046 count combination-full subsets.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Subsets[Range[n]],combs[n,#]!={}&]],{n,0,5}]
  • PARI
    a(n)={
      my(comb(k,b)=while(b>>k, b=bitor(b, b>>k); k*=2); b);
      my(recurse(k,b)=
        if(bittest(b,0), 2^(n+1-k),
        if(2*k>n, 2^(n+1-k) - 2^sum(j=k, n, !bittest(b,j)),
        self()(k+1, b) + self()(k+1, comb(k,b)) )));
      recurse(1, 1<Andrew Howroyd, Sep 04 2023

Extensions

Terms a(12) and beyond from Andrew Howroyd, Sep 04 2023
Showing 1-10 of 18 results. Next