A308616 Number of well-formed formulas of length n in a formal propositional language with one unitary operator, one binary operator, and one propositional variable.
1, 0, 0, 1, 1, 0, 1, 3, 2, 1, 6, 10, 6, 10, 30, 36, 29, 70, 141, 147, 182, 421, 658, 714, 1183, 2346, 3192, 4027, 7404, 12672, 16633, 24508, 44462, 68641, 93588, 151866, 260118, 381888, 557128, 934220, 1509807, 2205216, 3414269, 5681573, 8828612, 13179557, 21120648, 34335784, 52494403, 80688120
Offset: 1
Examples
For n = 8, there are a(8) = 3 possible well-formed formulas: (-(a*a)),((-a)*a),(a*(-a)). For n = 12, there are a(12) = 10 possible well-formed formulas: (-((a*a)*a)), ((-(a*a))*a), (((-a)*a)*a), ((a*(-a))*a), ((a*a)*(-a)), (-(a*(a*a))), ((-a)*(a*a)), (a*(-(a*a))), (a*((-a)*a)), (a*(a*(-a))).
Crossrefs
Cf. A000108.
Programs
-
Mathematica
nmax = 50; A[_] = 0; Do[A[x_] = x + x^3 (A[x]^2 + A[x]) + O[x]^(nmax+1), {nmax+1}]; CoefficientList[A[x]/x, x] (* Jean-François Alcover, Sep 28 2019 *)
-
PARI
seq(n)={Vec(1 - x^3 - sqrt((1 - x^3)^2 - 4*x*x^3 + O(x^4*x^n)))/2} \\ Andrew Howroyd, Sep 15 2019
Formula
If S is the set of pairs of nonnegative integers for which 4b + 3u + 1 = n, then a(n) = Sum_{(b,u) in S} binomial(2b+u, u)*A000108(b).
From Andrew Howroyd, Sep 15 2019: (Start)
G.f.: A(x) satisfies A(x) = x + x^3*(A(x)^2 + A(x)).
G.f.: (1 - x^3 - sqrt((1 - x^3)^2 - 4*x*x^3))/(2*x^3). (End)
a(n) ~ 5^(1/4) * phi^(n+2) / (2*sqrt(Pi)*n^(3/2)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Sep 28 2019
Comments