A308630 Triangle T(n,k) read by rows: the sum of all smallest parts among all k-compositions of n.
1, 2, 2, 3, 2, 3, 4, 6, 6, 4, 5, 6, 9, 12, 5, 6, 12, 18, 24, 20, 6, 7, 12, 27, 40, 50, 30, 7, 8, 20, 36, 68, 100, 90, 42, 8, 9, 20, 54, 108, 175, 210, 147, 56, 9, 10, 30, 72, 160, 290, 420, 392, 224, 72, 10, 11, 30, 90, 224, 460, 756, 882, 672, 324, 90, 11, 12, 42, 120, 312, 700, 1272, 1764, 1680, 1080, 450, 110
Offset: 1
Examples
The triangle starts in row n=1 with columns 1<=k<=n as: 1; 2, 2; 3, 2, 3; 4, 6, 6, 4; 5, 6, 9, 12, 5; 6, 12, 18, 24, 20, 6; 7, 12, 27, 40, 50, 30, 7; 8, 20, 36, 68,100, 90, 42, 8; 9, 20, 54,108,175,210,147, 56, 9; 10, 30, 72,160,290,420,392,224, 72, 10; ...
Links
- Knopfmacher, Arnold; Munagi, Augustine O. Smallest parts in compositions, Kotsireas, Ilias S. (ed.) et al., Advances in combinatorics. 3rd Waterloo workshop on computer algebra (WWCA, W80) 2011, Waterloo, Canada, May 26-29, 2011. Berlin: Springer. 197-207 (2013).
Crossrefs
Programs
-
Maple
A308630 := proc(n,k) add(j*binomial(n-(j-1)*k-2,k-2),j=1..floor(n/k)) ; %*k ; end proc:
Formula
T(n,k) = k*sum_{j=1..floor(n/k)} binomial(n-(j-1)*k-2, k-2).