cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308642 Decimal expansion of cosh(sqrt(13/3)*Pi/2)*sech(sqrt(5/3)*Pi/2).

Original entry on oeis.org

3, 4, 0, 8, 4, 3, 7, 9, 5, 2, 6, 8, 8, 4, 9, 9, 1, 2, 5, 0, 9, 7, 2, 5, 6, 8, 9, 4, 3, 0, 4, 2, 0, 6, 6, 9, 8, 6, 2, 0, 9, 2, 2, 1, 8, 4, 3, 0, 7, 6, 6, 3, 1, 2, 3, 8, 2, 7, 0, 0, 2, 6, 5, 5, 8, 4, 4, 2, 5, 0, 1, 9, 9, 6, 3, 5, 8, 9, 0, 8, 0, 0, 9, 0, 2, 8, 6, 4, 3, 4, 2, 5, 3, 3, 9, 6, 0, 0, 1, 5, 7, 2, 4, 1, 2, 2, 2, 2, 5, 6, 0, 1, 4, 0, 6, 7, 8, 3, 9, 7
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 15 2019

Keywords

Examples

			3.4084379526884991250972568943042066986209221843076631...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Cosh[Sqrt[13/3] Pi/2] Sech[Sqrt[5/3] Pi/2], 10, 120][[1]]
    RealDigits[Product[(1 + 1/(3 k (k - 1)/2 + 1)), {k, 1, Infinity}], 10, 120][[1]]

Formula

Equals Product_{k>=1} (1 + 1/(3*k*(k - 1)/2 + 1)).
Equals Product_{k>=1} (1 + 1/A005448(k)).