A308643 Odd squarefree composite numbers k, divisible by the sum of their prime factors, sopfr (A001414).
105, 231, 627, 805, 897, 1581, 2967, 3055, 4543, 5487, 6461, 6745, 7881, 9717, 10707, 14231, 15015, 16377, 21091, 26331, 29607, 33495, 33901, 33915, 35905, 37411, 38843, 40587, 42211, 45885, 49335, 50505, 51051, 53295, 55581, 60297
Offset: 1
Keywords
Examples
105=3*5*7; sum of prime factors = 15 and 105 = 7*15, so 105 is a term.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Magma
[k:k in [2*d+1: d in [1..35000]]|IsSquarefree(k) and not IsPrime(k) and k mod &+PrimeDivisors(k) eq 0]; // Marius A. Burtea, Jun 19 2019
-
Maple
with(NumberTheory); N := 500; for n from 2 to N do S := PrimeFactors(n); X := add(S); if IsSquareFree(n) and not mod(n, 2) = 0 and not isprime(n) and mod(n, X) = 0 then print(n); end if: end do:
-
Mathematica
aQ[n_] := Module[{f = FactorInteger[n]}, p=f[[;;,1]]; e=f[[;;,2]]; Length[e] > 1 && Max[e]==1 && Divisible[n, Plus@@(p^e)]]; Select[Range[1, 61000, 2], aQ] (* Amiram Eldar, Jul 04 2019 *)
Comments